Inclined magnetic field, thermal radiation and Hall current effects on natural convection flow between vertical parallel plates

Author(s):  
K. Madhusudhan Reddy ◽  
D. Srinivasacharya ◽  
Kolla Kaladhar
2019 ◽  
Vol 141 (10) ◽  
Author(s):  
K. Kaladhar ◽  
K. Madhusudhan Reddy ◽  
D. Srinivasacharya

Abstract This analysis studies the impact of an inclined magnetic field, hall current, and thermal radiation on fully developed electrically conducting mixed convection flow through a channel. The governing equations are nondimensionalized. The resulting system of nonlinear ordinary differential equations is solved utilizing spectral quasi-linearization method. Impact of all the pertaining flow parameters of this study on all the dimensionless profiles was calculated and presented through plots. Also, the nature of the physical parameters was calculated and presented in table form. This study clearly exhibits that the inclined magnetic field influences the fluid flow remarkably.


2016 ◽  
Vol 26 (6) ◽  
pp. 1932-1953 ◽  
Author(s):  
Marneni Narahari ◽  
M Kamran

Purpose – The purpose of this paper is to investigate the effects of thermal radiation and viscous dissipation on steady natural convection flow of a viscous incompressible fluid along a uniformly moving infinite vertical porous plate with Newtonian heating in the presence of transverse magnetic field. The governing non-linear boundary layer equations are solved by using homotopy analysis method (HAM). The effects of various system parameters on velocity and temperature fields are discussed graphically, and the numerical values for skin friction and Nusselt number are presented in tabular form. Design/methodology/approach – The problem is formulated using the Boussinesq approximation under the effects of thermal radiation and transverse magnetic field. The resulting coupled system of non-linear differential equations is solved using HAM with appropriate boundary conditions for Newtonian heating of the plate. HAM is a powerful method which provides rapidly converging series solution for the velocity and temperature fields. The effects of Prandtl number, Grashof number, suction parameter, magnetic field parameter, radiation parameter and Eckert number on the fluid velocity, temperature, skin friction and Nusselt number have been investigated. Findings – The HAM solution has been successfully applied to find the converging series solution for velocity and temperature fields in terms of pertinent system parameters. Comparison of the exact solution results agree well with the HAM solution results in the absence of Eckert number and this indicates that the HAM solutions are accurate. It is found that the velocity and temperature profiles decreases with the increase of thermal radiation and suction parameters. An increase in the magnetic field parameter leads to a rise in the fluid temperature and fall in the fluid velocity. Research limitations/implications – The present analysis is limited to steady state laminar natural convection flow only. Unsteady natural- /mixed-convection laminar flow in the presence of thermal radiation, chemical reaction and transverse magnetic field will be investigated in a future work. Practical implications – The study provides very useful information for heat transfer engineers to understand the heat transfer rate when the moving vertical porous surface temperature is not known a prior. The present results have immediate relevance in the design of nuclear reactors where vertical moving porous plates are using as control rods. Originality/value – The present research work is relatively original and illustrates the effects of thermal radiation, viscous dissipation and transverse magnetic field on natural convection flow past a uniformly moving infinite vertical porous plate with Newtonian heating.


Author(s):  
Basant K. Jha ◽  
Peter B. Malgwi

AbstractThis study examines the impact of induced magnetic field and Hall current on steady fully developed hydromagnetic natural convection flow in a micro-channel under the action of an inclined magnetic field. The mathematical model responsible for the present physical situation is presented in a dimensionless form under relevant boundary conditions. The governing coupled equations are solved exactly. A parametric study of some physical parameters is conducted and a representative set of numerical results for the velocity field, the induced magnetic field, induced current density, volume flow rate, and skin friction on the micro-channel surfaces are illustrated graphically. It is observed that magnetic field inclination plays an important role in flow formation inside the micro-channel. Numerical computation reveals that the increase in inclination angle reduces the hydromagnetic drag leading to enhancement in primary fluid velocity, while the impact is just converse on the secondary fluid velocity. Furthermore, the increase in Hall current parameter increases the magnitude of the fluid velocity in both primary and secondary flow directions.


Sign in / Sign up

Export Citation Format

Share Document