Exergy analysis of a counter-flow Ranque-Hilsch vortex tube having different helical vortex generators

2012 ◽  
Vol 10 (2) ◽  
pp. 228 ◽  
Author(s):  
Burak Markal ◽  
Orhan Aydı ◽  
N.A. n ◽  
Mete Avcı
2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Hüseyin Kaya ◽  
Fahrettin Günver ◽  
Onuralp Uluer ◽  
Volkan Kırmacı

An experimental analysis for parallel connected two identical counter flow Ranque–Hilsch vortex tubes (RHVT) with different nozzle materials and numbers was conducted by using compressed air as a working fluid in this paper. Heating and cooling performance of vortex tube system (circuit) and the results of exergy analysis are researched comprehensively according to different inlet pressure, nozzle numbers, and materials. Nozzles made of polyamide plastic, aluminum, and brass were mounted into the vortex tubes individually for each case of experimental investigation with the numbers of nozzles 2, 3, 4, 5, and 6. The range of operated inlet pressure 150–550 kPa with 50 kPa variation. The ratio of length–diameter (L/D) of each vortex tube in the circuit is 14 and the cold mass fraction is 0.36. Coefficient of performance (COP) values, heating, and cooling capacity of the parallel connected RHVT system were evaluated. Further, an exergy analysis was carried out to evaluate the energy losses and second law efficiency of the vortex tube circuit. The greatest thermal performance was obtained with aluminum-six-nozzle when taking into account all parameters such as temperature difference, COP values, heating and cooling capacity, and exergy analysis.


2018 ◽  
Vol 980 ◽  
pp. 012003
Author(s):  
M A Tsoy ◽  
S G Skripkin ◽  
P A Kuibin ◽  
S I Shtork ◽  
S V Alekseenko

Author(s):  
Hitesh Thakare ◽  
Ashok Parekh ◽  
Arif Upletawala ◽  
Bhushan Behede

Energy ◽  
2018 ◽  
Vol 165 ◽  
pp. 958-971 ◽  
Author(s):  
Jie Lin ◽  
Duc Thuan Bui ◽  
Ruzhu Wang ◽  
Kian Jon Chua

2005 ◽  
Vol 17 (10) ◽  
pp. 107101 ◽  
Author(s):  
Y. Fukumoto ◽  
V. L. Okulov

2021 ◽  
Vol 850 (1) ◽  
pp. 012024
Author(s):  
Ravi Kant Singh ◽  
Achintya Kumar Pramanick ◽  
Subhas Chandra Rana

Abstract The present study intends to improve the performance of the Ranque-Hilsch counter flow vortex tube, analysed using computational fluid dynamics. In the axisymmetric 3-D, steady-state, compressible, and turbulent flow vortex tube, the air has been used as the working fluid. The ANSYS17.1 FLUENT software has been used with the standard º-ε turbulent model for different mass fraction of cold fluid and inlet pressure in the numerical simulation and validated with the experimental results. It is observed from the study that as the inlet chambers number increases from 1 to 2, there is a decrease of 7.8 % in the cold exit temperature of the vortex tube. However, insulating the double chamber vortex tube leads to a further reduction of 4.2% in the cold exit temperature. Therefore, it indicates that the overall decline in the cold exit temperature from one chamber non-insulated vortex tube to double chamber insulated vortex tube is 9.6%. In terms of cold exit temperature, it can be concluded that using a double inlet chamber vortex tube with insulation yields the optimum results.


Sign in / Sign up

Export Citation Format

Share Document