scholarly journals Numerical study of a double inlet chamber counter flow vortex tube with insulation

2021 ◽  
Vol 850 (1) ◽  
pp. 012024
Author(s):  
Ravi Kant Singh ◽  
Achintya Kumar Pramanick ◽  
Subhas Chandra Rana

Abstract The present study intends to improve the performance of the Ranque-Hilsch counter flow vortex tube, analysed using computational fluid dynamics. In the axisymmetric 3-D, steady-state, compressible, and turbulent flow vortex tube, the air has been used as the working fluid. The ANSYS17.1 FLUENT software has been used with the standard º-ε turbulent model for different mass fraction of cold fluid and inlet pressure in the numerical simulation and validated with the experimental results. It is observed from the study that as the inlet chambers number increases from 1 to 2, there is a decrease of 7.8 % in the cold exit temperature of the vortex tube. However, insulating the double chamber vortex tube leads to a further reduction of 4.2% in the cold exit temperature. Therefore, it indicates that the overall decline in the cold exit temperature from one chamber non-insulated vortex tube to double chamber insulated vortex tube is 9.6%. In terms of cold exit temperature, it can be concluded that using a double inlet chamber vortex tube with insulation yields the optimum results.

2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Hüseyin Kaya ◽  
Fahrettin Günver ◽  
Onuralp Uluer ◽  
Volkan Kırmacı

An experimental analysis for parallel connected two identical counter flow Ranque–Hilsch vortex tubes (RHVT) with different nozzle materials and numbers was conducted by using compressed air as a working fluid in this paper. Heating and cooling performance of vortex tube system (circuit) and the results of exergy analysis are researched comprehensively according to different inlet pressure, nozzle numbers, and materials. Nozzles made of polyamide plastic, aluminum, and brass were mounted into the vortex tubes individually for each case of experimental investigation with the numbers of nozzles 2, 3, 4, 5, and 6. The range of operated inlet pressure 150–550 kPa with 50 kPa variation. The ratio of length–diameter (L/D) of each vortex tube in the circuit is 14 and the cold mass fraction is 0.36. Coefficient of performance (COP) values, heating, and cooling capacity of the parallel connected RHVT system were evaluated. Further, an exergy analysis was carried out to evaluate the energy losses and second law efficiency of the vortex tube circuit. The greatest thermal performance was obtained with aluminum-six-nozzle when taking into account all parameters such as temperature difference, COP values, heating and cooling capacity, and exergy analysis.


Author(s):  
Hitesh Thakare ◽  
Ashok Parekh ◽  
Arif Upletawala ◽  
Bhushan Behede

Engineering ◽  
2012 ◽  
Vol 04 (11) ◽  
pp. 774-777 ◽  
Author(s):  
Dedy Zulhidayat Noor ◽  
Heru Mirmanto ◽  
Joko Sarsetiyanto ◽  
Denny M. E. Soedjono ◽  
Sri Bangun Setyawati

2015 ◽  
Vol 127 ◽  
pp. 170-176
Author(s):  
Hitesh R. Thakare ◽  
Aniket Monde ◽  
Bhushan S. Patil ◽  
A.D. Parekh

Author(s):  
В.Н. Самохвалов

The change in air temperature along the axis of the expansion chamber in the zones of the nozzle inlet and the flow swirler in the direct-flow, counter-flow, three-flow and single-flow vortex tubes has been investigated. It has been established that in all cases, the cooling of air in the vortex tube occurs in the zone of the swirling device, and its heating - in the zone of unwinding of the flow. The change in air temperature in the axial zone along the length of the expansion chamber occurs due to heat exchange between the heating and cooling zones.


2018 ◽  
Vol 180 ◽  
pp. 02047 ◽  
Author(s):  
Jan Kracik ◽  
Vaclav Dvorak ◽  
Vu Nguyen Van ◽  
Kamil Smierciew

These days, much effort is being put into lowering the consumption of electric energy and involving renewable energy sources. Many engineers and designers are trying to develop environment-friendly technologies worldwide. It is related to incorporating appropriate devices into such technologies. The object of this paper is to investigate these devices in connection with refrigeration systems. Ejectors can be considered such as these devices. The primary interest of this paper is to investigate the suitability of a numerical model for an ejector, which is incorporated into a refrigeration system. In the present paper, there have been investigated seven different test runs of working of the ejector with a working fluid R-1234ze(E). Some of the investigated cases seem to have a good agreement and there are no significant discrepancies between them, however, there are also cases that do not correspond to the experimental data at all. The ejector has been investigated in both on-design and off-design working modes. A comparison between the experimental and numerical data (CFD) performed by Ansys Fluent software is presented and discussed for both an ideal and a real gas model. In addition, an enhanced analytical model has been introduced for all runs of the ejector.


Sign in / Sign up

Export Citation Format

Share Document