Greenhouse gas emission estimation for a UASB reactor in a dairy wastewater treatment plant

2019 ◽  
Vol 17 (4) ◽  
pp. 373
Author(s):  
Hakki Gülen ◽  
Pelin Yapcolu
2013 ◽  
Vol 69 (3) ◽  
pp. 451-463 ◽  
Author(s):  
D. W. de Haas ◽  
C. Pepperell ◽  
J. Foley

Primary operating data were collected from forty-six wastewater treatment plants (WWTPs) located across three states within Australia. The size range of plants was indicatively from 500 to 900,000 person equivalents. Direct and indirect greenhouse gas emissions were calculated using a mass balance approach and default emission factors, based on Australia's National Greenhouse Energy Reporting (NGER) scheme and IPCC guidelines. A Monte Carlo-type combined uncertainty analysis was applied to the some of the key emission factors in order to study sensitivity. The results suggest that Scope 2 (indirect emissions due to electrical power purchased from the grid) dominate the emissions profile for most of the plants (indicatively half to three quarters of the average estimated total emissions). This is only offset for the relatively small number of plants (in this study) that have significant on-site power generation from biogas, or where the water utility purchases grid electricity generated from renewable sources. For plants with anaerobic digestion, inventory data issues around theoretical biogas generation, capture and measurement were sometimes encountered that can skew reportable emissions using the NGER methodology. Typically, nitrous oxide (N2O) emissions dominated the Scope 1 (direct) emissions. However, N2O still only accounted for approximately 10 to 37% of total emissions. This conservative estimate is based on the ‘default’ NGER steady-state emission factor, which amounts to 1% of nitrogen removed through biological nitrification-denitrification processing in the plant (or indicatively 0.7 to 0.8% of plant influent total nitrogen). Current research suggests that true N2O emissions may be much lower and certainly not steady-state. The results of this study help to place in context research work that is focused on direct emissions from WWTPs (including N2O, methane and carbon dioxide of non-biogenic origin). For example, whereas non-biogenic CO2 contributions are relatively minor, it appears that opportunities to reduce indirect emissions as a result of modest savings in power consumption are at least in the same order as those from reducing N2O emissions. To avoid potentially high reportable emissions under NGER guidelines, particularly for methane, the onus is placed on WWTP managers to ensure that accurate plant monitoring operating records are kept.


Sign in / Sign up

Export Citation Format

Share Document