Enhancement in repair of radiation-induced DNA strand breaks in vivo by tocopherol monoglucoside

2007 ◽  
Vol 4 (1) ◽  
pp. 43 ◽  
Author(s):  
Veena Prakash Salvi ◽  
Dharmendra Kumar Maurya ◽  
Tsutomu V. Kagiya ◽  
Cherupally Krishnan Krishnan Nair
1997 ◽  
Vol 272 (6) ◽  
pp. L1174-L1180 ◽  
Author(s):  
M. Takeoka ◽  
W. F. Ward ◽  
H. Pollack ◽  
D. W. Kamp ◽  
R. J. Panos

Administration of exogenous keratinocyte growth factor (KGF) prevents or attenuates several forms of oxidant-mediated lung injury. Because DNA damage in epithelial cells is a component of radiation pneumotoxicity, we determined whether KGF ameliorated DNA strand breaks in irradiated A549 cells. Cells were exposed to 137Cs gamma rays, and DNA damage was measured by alkaline unwinding and ethidium bromide fluorescence after a 30-min recovery period. Radiation induced a dose-dependent increase in DNA strand breaks. The percentage of double-stranded DNA after exposure to 30 Gy increased from 44.6 +/- 3.5% in untreated control cells to 61.6 +/- 5.0% in cells cultured with 100 ng/ml KGF for 24 h (P < 0.05). No reduction in DNA damage occurred when the cells were cultured with KGF but maintained at 0 degree C during and after irradiation. The sparing effect of KGF on radiation-induced DNA damage was blocked by aphidicolin, an inhibitor of DNA polymerases-alpha, -delta, and -epsilon and by butylphenyl dGTP, which blocks DNA polymerase-alpha strongly and polymerases-delta and -epsilon less effectively. However, dideoxythymidine triphosphate, a specific inhibitor of DNA polymerase-beta, did not abrogate the KGF effect. Thus KGF increases DNA repair capacity in irradiated pulmonary epithelial cells, an effect mediated at least in part by DNA polymerases-alpha, -delta, and -epsilon. Enhancement of DNA repair capability after cell damage may be one mechanism by which KGF is able to ameliorate oxidant-mediated alveolar epithelial injury.


Science ◽  
1971 ◽  
Vol 172 (3985) ◽  
pp. 851-854 ◽  
Author(s):  
C. D. Town ◽  
K. C. Smith ◽  
H. S. Kaplan

Blood ◽  
1988 ◽  
Vol 72 (6) ◽  
pp. 1884-1890 ◽  
Author(s):  
AD Ho ◽  
K Ganeshaguru ◽  
WU Knauf ◽  
G Dietz ◽  
I Trede ◽  
...  

Abstract Deoxycoformycin (DCF), an adenosine deaminase (ADA) inhibitor, has been shown to be active in lymphoid neoplasms. The mechanism of cytotoxicity might involve accumulation of deoxyadenosine triphosphate (dATP), depletion of the nicotinamide adenine dinucleotide (NAD) and ATP pool, induction of double-stranded DNA strand breaks, or inhibition of S- adenosyl homocysteine hydrolase (SAH-hydrolase). We have investigated the biochemical changes in the circulating malignant cells of patients with chronic leukemia/lymphoma who were treated with DCF (4 mg/m2 weekly). Blood samples were taken from 17 patients with 60% or more circulating leukemic cells before, 4, 24, and 48 hours and five days after the first administration of DCF. Leukemic cells were separated and studied for changes in ADA, dATP, ATP, NAD, and SAH-hydrolase levels and DNA strand breaks and the data analyzed according to clinical response. Inhibition of ADA activity was found in all except one patient at 4 to 24 hours after the first administration of DCF. dATP started to accumulate at four hours, reached a maximum level between 24 and 48 hours, and returned to base values on the fifth day. Intracellular ATP and NAD levels were transiently reduced in some of the patients. However, no correlation between these changes and a clinical response could be found. DNA strand breaks could be studied in 13 patients. A significant increase in DNA breaks at 24 to 48 hours was found in six of the seven responders but only in one of the six nonresponders. At 24 hours, SAH-hydrolase levels were reduced in all seven responders studied, but only in two of the seven nonresponders. The difference in inhibition of SAH-hydrolase was statistically significant (P = .0023). These results suggest that DNA strand breaks and inhibition of SAH-hydrolase correlate with clinical response.


2019 ◽  
Vol 20 (12) ◽  
pp. 2999 ◽  
Author(s):  
Maria Moreno-Villanueva ◽  
Andreas Kramer ◽  
Tabea Hammes ◽  
Maria Venegas-Carro ◽  
Patrick Thumm ◽  
...  

Several studies indicate that acute exercise induces DNA damage, whereas regular exercise increases DNA repair kinetics. Although the molecular mechanisms are not completely understood, the induction of endogenous reactive oxygen species (ROS) during acute exhaustive exercise due to metabolic processes might be responsible for the observed DNA damage, while an adaptive increase in antioxidant capacity due to regular physical activity seems to play an important protective role. However, the protective effect of physical activity on exogenously induced DNA damage in human immune cells has been poorly investigated. We asked the question whether individuals with a high aerobic capacity would have an enhanced response to radiation-induced DNA damage. Immune cells are highly sensitive to radiation and exercise affects lymphocyte dynamics and immune function. Therefore, we measured endogenous and radiation-induced DNA strand breaks and poly (ADP-ribose) polymerase-1 (PARP1) activity in peripheral blood mononuclear cells (PBMCs) from endurance-trained (maximum rate of oxygen consumption measured during incremental exercise V’O2max > 55 mL/min/kg) and untrained (V’O2max < 45 mL/min/kg) young healthy male volunteers before and after exhaustive exercise. Our results indicate that: (i) acute exercise induces DNA strand breaks in lymphocytes only in untrained individuals, (ii) following acute exercise, trained individuals repaired radiation-induced DNA strand breaks faster than untrained individuals, and (iii) trained subjects retained a higher level of radiation-induced PARP1 activity after acute exercise. The results of the present study indicate that increased aerobic fitness can protect immune cells against radiation-induced DNA strand breaks.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 13005-13005 ◽  
Author(s):  
L. Liu ◽  
A. Bulgar ◽  
J. Donze ◽  
B. J. Adams ◽  
C. P. Theuer ◽  
...  

13005 Background: TRC102 (methoxyamine) reverses resistance to alkylating agents by inhibiting base excision repair (BER; a mechanism of DNA repair), thereby increasing DNA strand breaks and potentiating the anti-tumor activity of alkylating agents without additional toxicity, Based on these data, TRC102 is currently being studied in combination with temozolomide in a phase 1 trial. We hypothesized that inhibition of BER by TRC102 would also increase DNA strand breaks and improve the anti-tumor activity of anti-metabolite chemotherapeutics, including pemetrexed, because these agents also produce AP sites that are recognized and repaired by BER. Methods: Pemetrexed- induced AP sites and BER inhibition was quantified using an apurinic/apyrimidinic (AP) site assay in vitro. Single and double DNA strand breaks were quantified by the Comet assay in vitro and anti-tumor activity was assessed in an in vivo xenograft study of subcutaneously implanted H460 human lung cancer cells. Results: Pemetrexed induced and TRC102 reduced the number of available AP sites in pemetrexed- treated H460 cells (by 60–80%), indicating successful inhibition of BER. TRC102 treatment increased DNA strand breaks in pemetrexed-treated H460 cells (2 fold increase versus treatment with pemetrexed alone). Premetrexed treatment alone and in combination with TRC 102 delayed tumor growth in vivo (tumor growth delay of 4.7 days in the 150 mg/m2 pemetrexed alone group, 5.7 days in the 150 mg/m2 pemetrexed + 2 mg/m2 TRC102 group and 6.9 days in the 150 mg/m2 pemetrexed + 4 mg/m2 TRC102 group); in vivo systemic toxicity was not increased. TRC102 alone had no effect in vitro or in vivo. Conclusions: TRC102 effectively inhibits BER in lung cancer cells treated with pemetrexed. Inhibition of DNA repair by TRC102 results in an increase in DNA strand breaks and improved anti-tumor activity versus treatment with pemetrexed alone. Given its preclinical efficacy and safety profile, study of TRC102 combined with pemetrexed in a phase 1 trial is warranted. No significant financial relationships to disclose.


Author(s):  
Charles R. Long ◽  
John R. Dobrinsky ◽  
Wesley M. Garrett ◽  
Lawrence A. Johnson

Sign in / Sign up

Export Citation Format

Share Document