Modelling for surface roughness in cylindrical grinding

Author(s):  
Ramesh Rudrapati ◽  
Pradip Kumar Pal ◽  
Asish Bandyopadhyay
2012 ◽  
Vol 503-504 ◽  
pp. 764-767 ◽  
Author(s):  
Lin Zhu ◽  
Lin Pan

The super-thin rod cylindrical grinding is a problem in the machining, super-thin rod with large slenderness ratio, poor rigidity, large roundness error after grinding, and with low processing efficiency. This study uses cylindrical honing processing super-thin rod parts, and designing the super-thin rod cylindrical honing head, carrying on a honing test. The results show that the super-thin rod cylindrical coarse honing capacity reach up to 0.002mm/double stroke(length 1698mm), surface roughness reach up to Ra 0.8 ~ 0.025μm after honing, roundness error reach up to 2μm. It fully shows that super-thin rod cylindrical honing technology has high precision, low surface roughness, flexible production processing and high efficiency.


Author(s):  
Cheol W. Lee

A new dynamic state space model is proposed for the in-process estimation and prediction of part qualities in the plunge cylindrical grinding process. A through review on various grinding models in literature reveals a hidden dynamic relationship among the grinding conditions, the grinding power, the surface roughness, and the part size due to the machine dynamics and the wheel wear, based on which a nonlinear state space equation is derived. After the model parameters are determined according to the reported values in literature, several simulations are run to verify that the model makes good physical sense. Since some of the output variables, such as the actual part size, may or may not be measured in industry applications, the observability is tested for different sets of outputs in order to see how each set of on-line sensors affects the observability of the model. The proposed model opens a new way of estimating the part qualities such as the surface roughness and the actual part size based on application of the state estimation algorithm to the measured outputs such as the grinding power. In addition, a long term prediction of the part qualities in batch grinding processes would be realized by simulation of the proposed model. Possible applications to monitoring and control of grinding processes are discussed along with several technical challenges lying ahead.


2013 ◽  
Vol 433-435 ◽  
pp. 2113-2116
Author(s):  
Zi Xin Chen ◽  
Feng Yu Xu

Machine vision based surface roughness inspection method is applied to assess different cylindrical grinding surfaces under LED illumination. Images directly recorded by a camera are analyzed by gray level co-occurrence matrix (GLCM) method to discover its texture information. It shows obviously relationship between feature values of the matrix and their corresponding surface roughness values. Uniform table are also designed to choose optimal parameters, which is five of distance between pixel pairs and ninety degree of angle to calculate GLCM. Entropy is chosen to represent different surface roughness images by comparison of correlation coefficients between the parameters and the corresponding surface roughness values.


Sign in / Sign up

Export Citation Format

Share Document