Cost effective synthesis of copper oxide nanowires on printed circuit boards

2014 ◽  
Vol 10 (3) ◽  
pp. 229 ◽  
Author(s):  
Chirojyoti Rava
Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 793
Author(s):  
Uroš Zupančič ◽  
Joshua Rainbow ◽  
Pedro Estrela ◽  
Despina Moschou

Printed circuit boards (PCBs) offer a promising platform for the development of electronics-assisted biomedical diagnostic sensors and microsystems. The long-standing industrial basis offers distinctive advantages for cost-effective, reproducible, and easily integrated sample-in-answer-out diagnostic microsystems. Nonetheless, the commercial techniques used in the fabrication of PCBs produce various contaminants potentially degrading severely their stability and repeatability in electrochemical sensing applications. Herein, we analyse for the first time such critical technological considerations, allowing the exploitation of commercial PCB platforms as reliable electrochemical sensing platforms. The presented electrochemical and physical characterisation data reveal clear evidence of both organic and inorganic sensing electrode surface contaminants, which can be removed using various pre-cleaning techniques. We demonstrate that, following such pre-treatment rules, PCB-based electrodes can be reliably fabricated for sensitive electrochemical biosensors. Herein, we demonstrate the applicability of the methodology both for labelled protein (procalcitonin) and label-free nucleic acid (E. coli-specific DNA) biomarker quantification, with observed limits of detection (LoD) of 2 pM and 110 pM, respectively. The proposed optimisation of surface pre-treatment is critical in the development of robust and sensitive PCB-based electrochemical sensors for both clinical and environmental diagnostics and monitoring applications.


Author(s):  
Giuseppe Arrabito ◽  
Christian Falconi ◽  
Vito Errico ◽  
Weihua Han

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 224
Author(s):  
Jinsung An

The aim of this study was to compare leaching characteristics of metals from printed circuit boards (PCBs), taken from waste electrical and electronic equipment in the presence and in the absence of the iron-oxidizing bacteria, Acidithiobacillus ferrooxidans. A. ferrooxidans not only increases the leached concentration of Cu from the PCBs, but also inhibits the components of the 0K medium and leached Cu from forming precipitates such as libethenite (Cu2(PO4)(OH)), thereby assisting Cu recovery from the PCBs. In addition, the leached concentration of Pb from PCBs decreased in the presence of A. ferrooxidans, due to Pb forming amorphous precipitates. It is expected that Pb is not highly toxic to A. ferrooxidans. Consequently, A. ferrooxidans can be used as a cost-effective and environmentally friendly way to leach out valuable metals from PCBs as low-grade urban ore.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Dhanalashmi Kaliyaraj ◽  
Menaka Rajendran ◽  
Vignesh Angamuthu ◽  
Annam Renita Antony ◽  
Manigundan Kaari ◽  
...  

Abstract Background E-waste management is extremely difficult to exercise owing to its complexity and hazardous nature. Printed circuit boards (PCBs) are the core components of electrical and electronic equipment, which generally consist of polymers, ceramics, and heavy metals. Results The present study has been attempted for removal of heavy metals from printed circuit board by metal-resistant actinobacterium Streptomyces albidoflavus TN10 isolated from the termite nest. This bacterium was found to recover different heavy metals (Al 66%, Ca 74%, Cu 68%, Cd 65%, Fe 42%, Ni 81%, Zn 82%, Ag 56%, Pb 46%) within 72 h under laboratory conditions. The metal content of PCB after bioleaching was analyzed by ICP-MS. The crude PCB and bioleaching residue were characterized by FT-IR, XRD, SEM for the determination of structural and functional group changes for confirmation of bioleaching. Conclusion The findings of the present study concluded that Streptomyces albidoflavus TN10 is a promising candidate for bioleaching of heavy metals from the printed circuit board as an eco-friendly and cost-effective process.


Sign in / Sign up

Export Citation Format

Share Document