Research on non-contact ultrasonic vibration assisted rotating electrical discharge machining (EDM) machine tool

2021 ◽  
Vol 17 (1) ◽  
pp. 1
Author(s):  
Dong Yinghuai ◽  
Song Jianbao ◽  
Xue Wei ◽  
Wang Yan ◽  
Li Guangyan
2007 ◽  
Vol 359-360 ◽  
pp. 374-378
Author(s):  
Ming Rang Cao ◽  
Shi Chun Yang ◽  
Wen Hui Li ◽  
Sheng Qiang Yang

The EDM can machined some superhard conducting material that cannot be handled by the traditional method, such as carbide alloy, tool steel and engineering materials etc., however, it is also accompanied with slow material removal rate(MRR) and poor surface quality (surface roughness). For some fine machining having rigorous criterion on size and surface roughness, the EDM cannot meet the demand. Some researches indicate that the MRR of small hole by electrical discharge machining combined with ultrasonic vibration (UEDM) can increase in certain range, but the surface quality is still poor. Although there are lots of the researches on the UEDM, some debates on machining mechanism and applied scope existed, and technology of UEDM needs the further study. After small hole machined by the UEDM, it is polished by ultrasonic vibrating. Two steps are includes in this technology. In the first place, on a high velocity electro discharge small hole machine with high-pressure dielectric liquid and hollow electrode, a transducer and horn are attached between the spindle and the electrode. The ultrasonic vibration of the tool electrode is implemented by connecting the horn and the tool electrode together with a chucking appliance. The second, after the small hole is complete, with the same machine tool and tool electrode the process of polishing the inwall of the small hole is carried out by accompanying the ultrasonic vibration, revolution and feed of the tool electrode with the abrasive material. In the experiments, the reference point for UEDM is found and the new theory is proposed to explain the increase of the MRR and the decrease of the surface roughness value .The polish with the ultrasonic vibration can improve further the surface roughness. The ultrasonic vibrating polish after the hole by UEDM is an economical and effective technology, which realizes machining of two procedures in one machine tool. So the process for changing machine tool and tool is not needed any more and the efficiency is further improved.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


2009 ◽  
Vol 626-627 ◽  
pp. 321-326
Author(s):  
Bao Xian Jia ◽  
D.S. Wang ◽  
Jing Zhe Guo

In order to obtain micro holes with high aspect ratio, a new technique of machining deep micro holes by combining EDM (Electrical Discharge Machining) with USM (Ultrasonic Machining) in inversion installing is researched. The workpiece is over the electrode. The ultrasonic vibration is affixed to the electrode. The workpiece and electrode are all immersed in working liquid. The debris generated by EDM is dropped out the hole from the gap between the electrode and the hole wall by the gravity and the pumping effect of ultrasonic vibration, so as to increasing the machining velocity and machined depth. The structural features of the machining device are described, and the exploratory experiment is carried out. The corresponding process relations are found out, which can provide references for further study of this technique. The micro holes with larger than 25 in aspect ratio are machined.


2002 ◽  
Vol 129 (1-3) ◽  
pp. 135-138 ◽  
Author(s):  
Q.H Zhang ◽  
J.H Zhang ◽  
J.X Deng ◽  
Y Qin ◽  
Z.W Niu

Sign in / Sign up

Export Citation Format

Share Document