Prediction model for coal-gas outburst using the genetic projection pursuit method

2017 ◽  
Vol 16 (3) ◽  
pp. 271 ◽  
Author(s):  
Yueqiang Liang ◽  
Deyong Guo ◽  
Zhanfeng Huang ◽  
Xihui Jiang
2017 ◽  
Vol 16 (3) ◽  
pp. 271 ◽  
Author(s):  
Xihui Jiang ◽  
Yueqiang Liang ◽  
Deyong Guo ◽  
Zhanfeng Huang

2021 ◽  
pp. 1-18
Author(s):  
Zhang Zixian ◽  
Liu Xuning ◽  
Li Zhixiang ◽  
Hu Hongqiang

The influencing factors of coal and gas outburst are complex, now the accuracy and efficiency of outburst prediction and are not high, in order to obtain the effective features from influencing factors and realize the accurate and fast dynamic prediction of coal and gas outburst, this article proposes an outburst prediction model based on the coupling of feature selection and intelligent optimization classifier. Firstly, in view of the redundancy and irrelevance of the influencing factors of coal and gas outburst, we use Boruta feature selection method obtain the optimal feature subset from influencing factors of coal and gas outburst. Secondly, based on Apriori association rules mining method, the internal association relationship between coal and gas outburst influencing factors is mined, and the strong association rules existing in the influencing factors and samples that affect the classification of coal and gas outburst are extracted. Finally, svm is used to classify coal and gas outbursts based on the above obtained optimal feature subset and sample data, and Bayesian optimization algorithm is used to optimize the kernel parameters of svm, and the coal and gas outburst pattern recognition prediction model is established, which is compared with the existing coal and gas outbursts prediction model in literatures. Compared with the method of feature selection and association rules mining alone, the proposed model achieves the highest prediction accuracy of 93% when the feature dimension is 3, which is higher than that of Apriori association rules and Boruta feature selection, and the classification accuracy is significantly improved, However, the feature dimension decreased significantly; The results show that the proposed model is better than other prediction models, which further verifies the accuracy and applicability of the coupling prediction model, and has high stability and robustness.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Fengxiang Nie ◽  
Honglei Wang ◽  
Liming Qiu

In China, coal-gas outburst is seriously affecting safety of the coal mine. To improve the safety status of underground coal mining, this work investigated the evolution process and occurrence mechanism of coal-gas outburst under the coupling action of stress and gas. Results show that increasing either gas pressure or in-situ stress can make coal destroy and destabilize, and the contribution of gas pressure to coal failure is twice that of in-situ stress. In ultradeep coal mining, coal-gas outburst may occur even under the condition of low gas pressure due to large in-situ stress. Moreover, the larger the mining depth is, the lower the gas index is required for disaster occurrence. The results have certain guiding significance for coal energy mining and the control of coal-gas outburst in deep coal mining.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Haibo Liu ◽  
Yujie Dong ◽  
Fuzhong Wang

This paper investigates the problem of gas outburst prediction in the working face of coal mine. Firstly, based on a comprehensive analysis of influence factors of gas outburst, an improved entropy weight algorithm is introduced into a grey correlation analysis algorithm; thus, the reasonable weights and correlation order of the influencing factors are obtained to improve the objectivity of the evaluation. The main controlling factors obtained are used as the input of the prediction model. Secondly, by utilizing the improved particle swarm optimization (IPSO), the penalty factor and kernel parameter of least square support vector machine (LSSVM) are optimized to enhance the global search ability and avoid the occurrence of the local optimal solutions, and a new prediction model of gas outburst based on IPSO-LSSVM is established. At last, the prediction model is applied in the tunneling heading face 14141 of Jiuli Hill mine in Jiaozuo City, China. The case study demonstrates that the prediction accuracy of the proposed model is 92%, which is improved compared with that of the SVM model and GA-LSSVM model.


2013 ◽  
Vol 44 (1) ◽  
pp. 68-78
Author(s):  
JiYan QIAO ◽  
Li CHEN ◽  
YanSheng DING

Sign in / Sign up

Export Citation Format

Share Document