scholarly journals Bellman function technique for multilinear estimates and an application to generalized paraproducts

2011 ◽  
Vol 60 (3) ◽  
pp. 813-846 ◽  
Author(s):  
Vjekoslav Kovac
2018 ◽  
Vol 11 (1) ◽  
pp. 89-93
Author(s):  
Paata Ivanisvili

AbstractWe illustrate a Bellman function technique in finding the modulus of uniform convexity of {L^{p}} spaces.


2018 ◽  
Vol 12 (5-6) ◽  
pp. 72-80
Author(s):  
A. A. Krylov

In the absence of strong motion records at the future construction sites, different theoretical and semi-empirical approaches are used to estimate the initial seismic vibrations of the soil. If there are records of weak earthquakes on the site and the parameters of the fault that generates the calculated earthquake are known, then the empirical Green’s function can be used. Initially, the empirical Green’s function method in the formulation of Irikura was applied for main shock record modelling using its aftershocks under the following conditions: the magnitude of the weak event is only 1–2 units smaller than the magnitude of the main shock; the focus of the weak event is localized in the focal region of a strong event, hearth, and it should be the same for both events. However, short-termed local instrumental seismological investigation, especially on seafloor, results usually with weak microearthquakes recordings. The magnitude of the observed micro-earthquakes is much lower than of the modeling event (more than 2). To test whether the method of the empirical Green’s function can be applied under these conditions, the accelerograms of the main shock of the earthquake in L'Aquila (6.04.09) with a magnitude Mw = 6.3 were modelled. The microearthquake with ML = 3,3 (21.05.2011) and unknown origin mechanism located in mainshock’s epicentral zone was used as the empirical Green’s function. It was concluded that the empirical Green’s function is to be preprocessed. The complex Fourier spectrum smoothing by moving average was suggested. After the smoothing the inverses Fourier transform results with new Green’s function. Thus, not only the amplitude spectrum is smoothed out, but also the phase spectrum. After such preliminary processing, the spectra of the calculated accelerograms and recorded correspond to each other much better. The modelling demonstrate good results within frequency range 0,1–10 Hz, considered usually for engineering seismological studies.


2021 ◽  
Vol 13 (2) ◽  
pp. 741
Author(s):  
Wirat Krasachat ◽  
Suthathip Yaisawarng

To overcome the challenging food safety and security problem, in 2003, the Thai government initiated ‘Good Agricultural Practices’ (GAP) technology. This paper used a sample of 107 small chili farms from the Chiyaphoom province for the 2012 crop year, and data envelopment analysis (DEA) meta-frontier directional distance function technique to answer two questions: (1) Are GAP-adopting farms, on average, more efficient than conventional farms? (2) Does access to GAP technology affect farmers’ decisions to adopt GAP technology? We also developed an ‘indirect’ approach to reduce the potential sample selection bias for small samples. For the dry-season subsample, GAP farms were more technically efficient when compared with non-GAP farms. These dry-season non-GAP farms may not adopt the GAP method because they have limited access to GAP technology. For the rainy-season subsample, on average, GAP farms were more efficient than non-GAP farms at the 5% level. Access to the GAP technology is not a possible reason for non-GAP rainy season farms to not adopt the GAP technology. To enable sustainable development, government agencies and nongovernmental organizations (NGOs) must develop and implement appropriate educational and training workshops to promote and assist GAP technology adoption for chili farms in Thailand.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3289
Author(s):  
Tomasz Kwapiński ◽  
Marcin Kurzyna

Mid-gap 1D topological states and their electronic properties on different 2D hybrid structures are investigated using the tight binding Hamiltonian and the Green’s function technique. There are considered straight armchair-edge and zig-zag Su–Schrieffer–Heeger (SSH) chains coupled with real 2D electrodes which density of states (DOS) are characterized by the van Hove singularities. In this work, it is shown that such 2D substrates substantially influence topological states end evoke strong asymmetry in their on-site energetic structures, as well as essential modifications of the spectral density function (local DOS) along the chain. In the presence of the surface singularities the SSH topological state is split, or it is strongly localized and becomes dispersionless (tends to the atomic limit). Additionally, in the vicinity of the surface DOS edges this state is asymmetrical and consists of a wide bulk part together with a sharp localized peak in its local DOS structure. Different zig-zag and armachair-edge configurations of the chain show the spatial asymmetry in the chain local DOS; thus, topological edge states at both chain ends can appear for different energies. These new effects cannot be observed for ideal wide band limit electrodes but they concern 1D topological states coupled with real 2D hybrid structures.


2021 ◽  
pp. 107754632199888
Author(s):  
Richa Kumari ◽  
Abhishek K Singh

This study discusses the propagation of a horizontally polarised shear wave in a layered composite structure consisting of couple stress stratum over a functionally graded orthotropic viscoelastic substrate due to point source existing at an imperfect interface of the stratum and substrate. Because of the CS effect in the stratum, the existence of the second kind of dispersive (shear) wave is established along with conventional first kind of a shear wave. The closed-form dispersion equations and damping equations of the first and second kind of a dispersive wave are derived by adopting non-traditional boundary conditions and Green’s function technique. The effect of characteristic length of microstructure, imperfect bonding parameter and functional gradient parameters on velocity profiles and attenuation profiles of the first and second kind of dispersive wave has been computed numerically and delineated graphically. For validation, established results are matched with the classical one.


2012 ◽  
Vol 4 (1) ◽  
pp. 1-31 ◽  
Author(s):  
P. Kumar ◽  
X. Yuan ◽  
R. Kind ◽  
J. Mechie

Abstract. The dense deployment of seismic stations so far in the western half of the United States within the USArray project provides the opportunity to study in greater detail the structure of the lithosphere-asthenosphere system. We use the S receiver function technique for this purpose which has higher resolution than surface wave tomography, is sensitive to seismic discontinuities and has no problems with multiples like P receiver functions. Only two major discontinuities are observed in the entire area down to about 300 km depth. These are the crust-mantle boundary (Moho) and a negative boundary which we correlate with the lithosphere-asthenosphere boundary (LAB) since a low velocity zone is the classical definition of the seismic observation of the asthenosphere by Gutenberg (1926). Our S receiver function LAB is at a depth of 70–80 km in large parts of westernmost North America. East of the Rocky Mountains its depth is generally between 90 and 110 km. Regions with LAB depths down to about 140 km occur in a stretch from northern Texas over the Colorado Plateau to the Columbia Basalts. These observations agree well with tomography results in the westernmost USA and at the east coast. However, in the central cratonic part of the USA the tomography LAB is near 200 km depth. At this depth no discontinuity is seen in the S receiver functions. The negative signal near 100 km depth in the central part of the USA is interpreted by Yuan and Romanowicz (2010) or Lekic and Romanowicz (2011) as a recently discovered mid lithospheric discontinuity (MLD). A solution for the discrepancy between receiver function imaging and surface wave tomography is not yet obvious and requires more high resolution studies at other cratons before a general solution may be found. Our results agree well with petrophysical models of increased water content in the asthenosphere, which predict a sharp and shallow LAB also in continents (Mierdel et al., 2007).


2017 ◽  
Vol 21 (5-6) ◽  
pp. 1049-1058
Author(s):  
A. V. Novikov ◽  
V. S. Posvyanskii ◽  
D. V. Posvyanskii

Sign in / Sign up

Export Citation Format

Share Document