2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 88-89
Author(s):  
Hayden E Williams ◽  
Ryan T Maurer ◽  
Brittany Carrender ◽  
Joel M DeRouchey ◽  
Jason C Woodworth ◽  
...  

Abstract Newborn pigs (n=1,892; 1.5 kg BW) were used in a 20-d study evaluating the effects of Fe injection timing after birth on preweaned pig performance and blood criteria. A total of 172 litters were used. One d after farrowing, piglets were weighed, and 11 pigs within each litter were allotted to 1 of 6 treatments in a CRD. Treatments consisted of pigs receiving no Fe injection or 200-mg of injectable Fe (GleptoForte, Ceva Animal Health, Lenexa, KS) provided on d 1, 3, 5, or 7 of age, or 200-mg on d 1 plus 200-mg on d 12. 1 pig/litter received no Fe injection and 2 pigs/litter were placed on all other treatments. Piglets were weighed on d 1 and 20 after birth to determine growth performance and bled on d 20 to determine Fe status. Increasing the age that piglets received the Fe injection tended to decrease (linear; P=0.080) ADG. Not providing an Fe injection decreased (P=0.0001) overall ADG and d 20 BW compared to all other treatments. Hemoglobin and Hct decreased (linear; P< 0.05) with increasing age when pigs received an Fe injection. There was no evidence of differences (P >0.10) between the pigs receiving a 200-mg injection on d 1 and d 12 compared to those receiving the Fe on d 1 only. Pigs not provided an Fe injection had decreased (P=0.0001) Hb and Hct values compared to pigs receiving an Fe injection. Pigs receiving the 200-mg injection on d 1 and 12 had increased (P=0.0001) Hb and Hct values compared to pigs receiving 200-mg on d 1 only. Results suggest that providing a 200-mg Fe injection within 7 d after farrowing is sufficient for optimizing preweaning growth performance. The additional 200-mg Fe injection at d 12 did not influence growth performance but does increase Hb and Hct at weaning.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jacinta I. Kalisch-Smith ◽  
Nikita Ved ◽  
Dorota Szumska ◽  
Jacob Munro ◽  
Michael Troup ◽  
...  

AbstractCongenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene–environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.


2004 ◽  
Vol 66 (2) ◽  
pp. 841-848 ◽  
Author(s):  
Makoto Anraku ◽  
Kenichiro Kitamura ◽  
Ayumi Shinohara ◽  
Masataka Adachi ◽  
Ayaka Suenaga ◽  
...  

Toxicology ◽  
2017 ◽  
Vol 392 ◽  
pp. 22-31 ◽  
Author(s):  
Pankaj Kumar ◽  
Tapas Chandra Nag ◽  
Kumar Abhiram Jha ◽  
Sanjay Kumar Dey ◽  
Poorti Kathpalia ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1619
Author(s):  
Megan E. Hayes ◽  
Lauren M. Hemsworth ◽  
Rebecca S. Morrison ◽  
Alan J. Tilbrook ◽  
Paul H. Hemsworth

This experiment studied the effects of lactation housing systems and human interaction on piglets’ responses to routine stressors. Forty litters of piglets were reared in either a standard farrowing crate (FC) or a loose farrowing and lactation pen (LP; PigSAFE pen) and received either routine contact with humans (C) or regular opportunities for positive human contact (+HC; 3 min of patting, stroking and scratching 5 times/week). Behavioural and physiological responses to routine husbandry procedures, weaning, novelty and humans were studied in addition to effects on piglet growth, injuries and survival. Compared to C piglets, +HC piglets vocalised for shorter durations (p = 0.018) during husbandry procedures and showed a lower intensity of escape behaviour during iron injection (p = 0.042) and oral vaccination (p = 0.026) at 3 d of age, capture at 2 wk of age (p < 0.001), and intramuscular vaccination (p = 0.005) at 3 wk of age. +HC piglets at 2 wk of age were faster than C piglets to approach (p = 0.048) and interact (p = 0.042) with a stationary unfamiliar human. Compared to LP piglets, FC piglets showed a lower intensity of escape behaviour during capture and iron administration by a stockperson at 3 d of age (p = 0.043). FC piglets at 2 wk of age were faster than LP piglets to approach (p = 0.005) and interact (p = 0.027) with a novel object and approach (p = 0.009) and interact (p = 0.008) with an unfamiliar human. FC piglets had fewer injuries than LP piglets at 2 wk of age (p = 0.004). +HC pigs had fewer injuries than C pigs after weaning (p = 0.003). After weaning there were more pigs from LP than FC observed to be upright (both stationary, p = 0.002 and walking, p = 0.024), vocalizing (p = 0.004), nosing another pig (p = 0.035) and nosing the pen floor (p = 0.038). There were no significant effects on neutrophil:lymphocyte ratios or plasma cortisol concentrations 1.5 h after weaning. However, 25 h after weaning +HC pigs had higher haptoglobin concentrations than C pigs (p = 0.002), and C/LP pigs had higher cortisol concentrations than +HC/LP and C/FC pigs (p = 0.012). There were no significant effects on piglet growth, the number of piglets born alive or the number stillborn, however there were more piglets weaned from FC than LP (p = 0.035). The results from this experiment raise questions that require further research on the ability of pigs reared in loose pens to cope with stressors such as exposure to humans, novelty, husbandry procedures and weaning. This experiment also provides evidence that regular positive human interaction reduces pigs’ fear of humans and husbandry procedures imposed by stockpeople. More research is required to determine if any of these effects are sustained long-term.


2006 ◽  
Vol 136 (7) ◽  
pp. 1868-1873 ◽  
Author(s):  
John A. Widness ◽  
Robert E. Serfass ◽  
Nadja Haiden ◽  
Steven E. Nelson ◽  
Kenneth A. Lombard ◽  
...  

Nephron ◽  
1998 ◽  
Vol 80 (3) ◽  
pp. 369-370 ◽  
Author(s):  
Isao Kurihara ◽  
Takao Saito ◽  
Kenji Nakayama ◽  
Hiroshi Sato

2018 ◽  
Vol 87 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Martin Svoboda ◽  
Karolína Píšťková

Iron deficiency is presently a serious problem in suckling piglets on pig farms. The most often used method of anaemia prevention in piglets is parenteral administration of iron dextran. Oral iron represents an alternative to this method. The goal of this article is to review current knowledge on oral iron administration in suckling piglets. The substances that can be used for this purpose include iron dextran, iron salts, iron chelates, carbonyl iron, an iron polymaltose complex and iron microparticles. The different methods of oral iron administration in piglets are discussed.


Sign in / Sign up

Export Citation Format

Share Document