5. Optimal design methodology for homogeneous azeotropic distillation columns

2019 ◽  
pp. 125-143
2000 ◽  
Vol 79 (3) ◽  
pp. 219-227 ◽  
Author(s):  
Stanislaw K Wasylkiewicz ◽  
Leo C Kobylka ◽  
Francisco J.L Castillo

2017 ◽  
Vol 24 (14) ◽  
pp. 3206-3218
Author(s):  
Yohei Kushida ◽  
Hiroaki Umehara ◽  
Susumu Hara ◽  
Keisuke Yamada

Momentum exchange impact dampers (MEIDs) were proposed to control the shock responses of mechanical structures. They were applied to reduce floor shock vibrations and control lunar/planetary exploration spacecraft landings. MEIDs are required to control an object’s velocity and displacement, especially for applications involving spacecraft landing. Previous studies verified numerous MEID performances through various types of simulations and experiments. However, previous studies discussing the optimal design methodology for MEIDs are limited. This study explicitly derived the optimal design parameters of MEIDs, which control the controlled object’s displacement and velocity to zero in one-dimensional motion. In addition, the study derived sub-optimal design parameters to control the controlled object’s velocity within a reasonable approximation to derive a practical design methodology for MEIDs. The derived sub-optimal design methodology could also be applied to MEIDs in two-dimensional motion. Furthermore, simulations conducted in the study verified the performances of MEIDs with optimal/sub-optimal design parameters.


2014 ◽  
Vol 11 (2) ◽  
pp. 339-350
Author(s):  
Khadidja Bouali ◽  
Fatima Kadid ◽  
Rachid Abdessemed

In this paper a design methodology of a magnetohydrodynamic pump is proposed. The methodology is based on direct interpretation of the design problem as an optimization problem. The simulated annealing method is used for an optimal design of a DC MHD pump. The optimization procedure uses an objective function which can be the minimum of the mass. The constraints are both of geometrics and electromagnetic in type. The obtained results are reported.


2010 ◽  
Vol 431 (2) ◽  
pp. 116-119 ◽  
Author(s):  
G. M. Ostrovskii ◽  
N. N. Ziyatdinov ◽  
T. V. Lapteva ◽  
N. Yu. Bogula

Author(s):  
P. Y. Shim ◽  
S. Mannoochehri

Abstract This paper presents a hybrid shape optimal design methodology using an implicit differentiation approach for sensitivity analysis and a node removal technique for shape alteration. The approach presented attempts to overcome the weaknesses inherent in each individual technique. The basic idea is to combine the sensitivity analysis, which forms the analytical basis for the algorithm, and a node removal technique, which grossly modifies the shape without the need for a remeshing after each iteration. The sensitivity analysis is based on the finite element equilibrium equation and the implicit differentiation technique. It examines the effect positional changes of the boundary nodes have on the stress values. Using the sensitivity results, a sequential linear programming algorithm is utilized to determine optimum positions of the boundary nodes. These optimization results are provided as inputs to an algorithm that decides which boundary nodes should be removed. By removing boundary nodes, the boundary elements change to either a triangular or a non-existent type. This shape modification procedure starts from the boundary elements and moves toward the internal elements. Only two iterations of finite element analysis are required to modify one boundary layer. To maintain the structural integrity and the connectivity of the elements in the model, a connectivity check is performed after each iteration. Three design examples are given to illustrate the accuracy and the steps involved in the proposed optimal design methodology.


Sign in / Sign up

Export Citation Format

Share Document