multiple steady states
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 23)

H-INDEX

35
(FIVE YEARS 2)

2021 ◽  
Vol 13 (24) ◽  
pp. 13763
Author(s):  
Dmitry Gromov ◽  
Thorsten Upmann

We provide an overview of the results devoted to the analysis of the dynamics and economics of shallow lakes, spanning the period from 1999 until now. A shallow lake serves as a typical representative of an ecological system subject to (possibly irreversible) regime shifts. The dynamics of a shallow lake are described by a non-linear model with multiple steady states and multiple domains of attraction and is thus suitable to model the evolution of an ecosystem featuring both resilience within a domain of stability and an abrupt regime shift outside of it. Beyond this, the shallow lake model can also be viewed as a metaphor for many other ecological problems. Due to the broad applicability of this model, there is substantial interest in the management of shallow lakes and both their optimal regulation and competitive usage.


2021 ◽  
Vol 321 (7) ◽  
pp. 1033-1044
Author(s):  
Benjamin J. W. Mills ◽  
Stephen Tennenbaum ◽  
David Schwartzman

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3804
Author(s):  
Jakub Szyman

The paper reports the occurrence of multiple steady-state zones in most of the constructions of fixed-bed photocatalytic reactors. Such a phenomenon has not been ever observed in a field of photocatalytic reactors. The simulation has been provided for a common case in a photocatalysis—the degradation of colored compounds. The mathematical model of the photocatalytic reactor with immobilized bed has been stated by a simple ideal mixing model (analogous to the CSTR model). The solution has been continued by the two parameters—the Damköhler number and the absorption coefficient related to the inlet stream concentration. Some branches of steady states include the limit point. The performed two-parametric continuation of the limit point showed the cusp bifurcation point. Besides the numerical simulation, the physical explanation of the observed phenomenon has been provided; the multiple steady-states occurrence is controlled by light absorption–reaction rate junction. When the reaction rate is limited by the light absorption, we can say that a light barrier occurs. The dynamical simulations show that when the process is operated in a field of multiple steady states, the overall reactor efficiency is related to the reactor set-up mode.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Vaidhiswaran Ramesh ◽  
J Krishnan

Multisite modification is a basic way of conferring functionality to proteins, and a key component of post-translational modification networks. Additional interest in multisite modification stems from its capability of acting as complex information processors. In this paper we connect two seemingly disparate themes: symmetry and multisite modification. We examine different classes of random modification networks of substrates involving separate or common enzymes. We demonstrate that under different instances of symmetry of the modification network (invoked explicitly or implicitly and discussed in the literature), the biochemistry of multisite modification can lead to the symmetry being broken. This is shown computationally and consolidated analytically, revealing parameter regions where this can (and in fact does) happen, and characteristics of the symmetry broken state. We discuss the relevance of these results in situations where exact symmetry is not present. Overall, through our study we show how symmetry breaking (i) can confer new capabilities to protein networks, including concentration robustness of different combinations of species (in conjunction with multiple steady states) (ii) could have been the basis for ordering of multisite modification, which is widely observed in cells (iii) can significantly impact information processing in multisite modification and in cell signalling networks/pathways where multisite modification is present (iv) can be a fruitful new angle for engineering in synthetic biology and chemistry. All in all, the emerging conceptual synthesis provides a new vantage point for the elucidation and the engineering of molecular systems at the junction of chemical and biological systems.


Sign in / Sign up

Export Citation Format

Share Document