16. The Euler–Lagrange equations in the Calculus of Variations: an introduction

2019 ◽  
pp. 267-288
1964 ◽  
Vol 68 (638) ◽  
pp. 111-116 ◽  
Author(s):  
D. J. Bell

SummaryThe problem of maximising the range of a given unpowered, air-launched vehicle is formed as one of Mayer type in the calculus of variations. Eulers’ necessary conditions for the existence of an extremal are stated together with the natural end conditions. The problem reduces to finding the incidence programme which will give the greatest range.The vehicle is assumed to be an air-to-ground, winged unpowered vehicle flying in an isothermal atmosphere above a flat earth. It is also assumed to be a point mass acted upon by the forces of lift, drag and weight. The acceleration due to gravity is assumed constant.The fundamental constraints of the problem and the Euler-Lagrange equations are programmed for an automatic digital computer. By considering the Lagrange multipliers involved in the problem a method of search is devised based on finding flight paths with maximum range for specified final velocities. It is shown that this method leads to trajectories which are sufficiently close to the “best” trajectory for most practical purposes.It is concluded that such a method is practical and is particularly useful in obtaining the optimum incidence programme during the initial portion of the flight path.


1981 ◽  
Vol 89 (3) ◽  
pp. 501-510 ◽  
Author(s):  
Chehrzad Shakiban

AbstractAn exact sequence resolving the Euler operator of the calculus of variations for partial differential polynomials in several dependent and independent variables is described. This resolution provides a solution to the ‘Inverse problem of the calculus of variations’ for systems of polynomial partial equations.That problem consists of characterizing those systems of partial differential equations which arise as the Euler-Lagrange equations of some variational principle. It can be embedded in the more general problem of finding a resolution of the Euler operator. In (3), hereafter referred to as I, a solution of this problem was given for the case of one independent and one dependent variable. Here we generalize this resolution to several independent and dependent variables simultaneously. The methods employed are similar in spirit to the algebraic techniques associated with the Gelfand-Dikii transform in I, although are considerably complicated by the appearance of several variables. In particular, a simple algebraic proof of the local exactness of a complex considered by Takens(5), Vinogradov(6), Anderson and Duchamp(1), and others appears as part of the resolution considered here.


2017 ◽  
Vol 8 (1) ◽  
pp. 779-808 ◽  
Author(s):  
Alexander Lecke ◽  
Lorenzo Luperi Baglini ◽  
Paolo Giordano

Abstract We present an extension of the classical theory of calculus of variations to generalized functions. The framework is the category of generalized smooth functions, which includes Schwartz distributions, while sharing many nonlinear properties with ordinary smooth functions. We prove full connections between extremals and Euler–Lagrange equations, classical necessary and sufficient conditions to have a minimizer, the necessary Legendre condition, Jacobi’s theorem on conjugate points and Noether’s theorem. We close with an application to low regularity Riemannian geometry.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jacky Cresson ◽  
Fernando Jiménez ◽  
Sina Ober-Blöbaum

<p style='text-indent:20px;'>We prove a Noether's theorem of the first kind for the so-called <i>restricted fractional Euler-Lagrange equations</i> and their discrete counterpart, introduced in [<xref ref-type="bibr" rid="b26">26</xref>,<xref ref-type="bibr" rid="b27">27</xref>], based in previous results [<xref ref-type="bibr" rid="b11">11</xref>,<xref ref-type="bibr" rid="b35">35</xref>]. Prior, we compare the restricted fractional calculus of variations to the <i>asymmetric fractional calculus of variations</i>, introduced in [<xref ref-type="bibr" rid="b14">14</xref>], and formulate the restricted calculus of variations using the <i>discrete embedding</i> approach [<xref ref-type="bibr" rid="b12">12</xref>,<xref ref-type="bibr" rid="b18">18</xref>]. The two theories are designed to provide a variational formulation of dissipative systems, and are based on modeling irreversbility by means of fractional derivatives. We explicit the role of time-reversed solutions and causality in the restricted fractional calculus of variations and we propose an alternative formulation. Finally, we implement our results for a particular example and provide simulations, actually showing the constant behaviour in time of the discrete conserved quantities outcoming the Noether's theorems.</p>


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 379
Author(s):  
Zdzislaw E. Musielak ◽  
Niyousha Davachi ◽  
Marialis Rosario-Franco

Lagrangian formalism is established for differential equations with special functions of mathematical physics as solutions. Formalism is based on either standard or non-standard Lagrangians. This work shows that the procedure of deriving the standard Lagrangians leads to Lagrangians for which the Euler–Lagrange equation vanishes identically, and that only some of these Lagrangians become the null Lagrangians with the well-defined gauge functions. It is also demonstrated that the non-standard Lagrangians require that the Euler–Lagrange equations are amended by the auxiliary conditions, which is a new phenomenon in the calculus of variations. The existence of the auxiliary conditions has profound implications on the validity of the Helmholtz conditions. The obtained results are used to derive the Lagrangians for the Airy, Bessel, Legendre and Hermite equations. The presented examples clearly demonstrate that the developed Lagrangian formalism is applicable to all considered differential equations, including the Airy (and other similar) equations, and that the regular and modified Bessel equations are the only ones with the gauge functions. Possible implications of the existence of the gauge functions for these equations are discussed.


2019 ◽  
Vol 150 (4) ◽  
pp. 1653-1669 ◽  
Author(s):  
Birzhan Ayanbayev ◽  
Nikos Katzourakis

AbstractLet n, $N \in {\open N}$ with $\Omega \subseteq {\open R}^n$ open. Given ${\rm H} \in C^2(\Omega \times {\open R}^N \times {\open R}^{Nn})$, we consider the functional 1$${\rm E}_\infty (u,{\rm {\cal O}})\, : = \, \mathop {{\rm ess}\,\sup}\limits_{\rm {\cal O}} {\rm H}(\cdot, u,{\rm D}u),\quad u\in W_{{\rm loc}}^{1,\infty} (\Omega, {\open R}^N),\quad {\rm {\cal O}}{\Subset}\Omega.$$ The associated PDE system which plays the role of Euler–Lagrange equations in $L^\infty $ is 2$$\left\{\matrix{{\rm H}_{P}(\cdot, u, {\rm D}u)\, {\rm D}\left({\rm H}(\cdot, u, {\rm D} u)\right) = \, 0, \hfill \cr {\rm H}(\cdot, u, {\rm D} u) \, [\![{\rm H}_{P}(\cdot, u, {\rm D} u)]\!]^\bot \left({\rm Div}\left({\rm H}_{P}(\cdot, u, {\rm D} u)\right)- {\rm H}_{\eta}(\cdot, u, {\rm D} u)\right) = 0,\hfill}\right.$$ where $[\![A]\!]^\bot := {\rm Proj}_{R(A)^\bot }$. Herein we establish that generalised solutions to (2) can be characterised as local minimisers of (1) for appropriate classes of affine variations of the energy. Generalised solutions to (2) are understood as ${\cal D}$-solutions, a general framework recently introduced by one of the authors.


2017 ◽  
Vol 4 (1) ◽  
pp. 52-61
Author(s):  
Joël Blot ◽  
Mamadou I. Koné

Abstract We establish Euler-Lagrange equations for a problem of Calculus of Variations where the unknown variable contains a term of delay on a segment


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 171
Author(s):  
Delfim F. M. Torres

The calculus of variations is a field of mathematical analysis born in 1687 with Newton’s problem of minimal resistance, which is concerned with the maxima or minima of integral functionals. Finding the solution of such problems leads to solving the associated Euler–Lagrange equations. The subject has found many applications over the centuries, e.g., in physics, economics, engineering and biology. Up to this moment, however, the theory of the calculus of variations has been confined to Newton’s approach to calculus. As in many applications negative values of admissible functions are not physically plausible, we propose here to develop an alternative calculus of variations based on the non-Newtonian approach first introduced by Grossman and Katz in the period between 1967 and 1970, which provides a calculus defined, from the very beginning, for positive real numbers only, and it is based on a (non-Newtonian) derivative that permits one to compare relative changes between a dependent positive variable and an independent variable that is also positive. In this way, the non-Newtonian calculus of variations we introduce here provides a natural framework for problems involving functions with positive images. Our main result is a first-order optimality condition of Euler–Lagrange type. The new calculus of variations complements the standard one in a nontrivial/multiplicative way, guaranteeing that the solution remains in the physically admissible positive range. An illustrative example is given.


1986 ◽  
Vol 102 (3-4) ◽  
pp. 291-303 ◽  
Author(s):  
Michel Chipot ◽  
Lawrence C. Evans

SynopsisWe demonstrate local Lipschitz regularity for minimisers of certain functionals which are appropriately convex and quadratic near infinity. The proof employs a blow-up argument entailing a linearisation of the Euler—Lagrange equations “at infinity”. As a application, we prove that minimisers for the relaxed optimal design problem derived by Kohn and Strang [3] are locally Lipschitz.


Sign in / Sign up

Export Citation Format

Share Document