13 Revealing Risks: European Moments in Nuclear Politics and the Anti-Nuclear Movement

2021 ◽  
pp. 331-362
Author(s):  
Astrid Mignon Kirchhof ◽  
Jan-Henrik Meyer
Keyword(s):  
2006 ◽  
Vol 173 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Takamune T. Saito ◽  
Daisuke Okuzaki ◽  
Hiroshi Nojima

During meiotic prophase I of the fission yeast Schizosaccharomyces pombe, oscillatory nuclear movement occurs. This promotes homologous chromosome pairing and recombination and involves cortical dynein, which plays a pivotal role by generating a pulling force with the help of an unknown dynein anchor. We show that Mcp5, the homologue of the budding yeast dynein anchor Num1, may be this putative dynein anchor. mcp5+ is predominantly expressed during meiotic prophase, and GFP-Mcp5 localizes at the cell cortex. Moreover, the mcp5Δ strain lacks the oscillatory nuclear movement. Accordingly, homologous pairing and recombination rates of the mcp5Δ strain are significantly reduced. Furthermore, the cortical localization of dynein heavy chain 1 appears to be reduced in mcp5Δ cells. Finally, the full function of Mcp5 requires its coiled-coil and pleckstrin homology (PH) domains. Our results suggest that Mcp5 localizes at the cell cortex through its PH domain and functions as a dynein anchor, thereby facilitating nuclear oscillation.


1995 ◽  
Vol 73 (S1) ◽  
pp. 364-368 ◽  
Author(s):  
Takashi Kamada ◽  
Shigeru Tanabe

Coprinus cinereus exhibits conspicuous nuclear movement and precise nuclear positioning during its life cycle. Examples include transhyphal migration of nuclei in compatible mating giving rise to a dikaryon, nuclear positioning relative to the hyphal apex in the dikaryon, the close spacing in interphase and conjugate division of the two nuclei in the dikaryon, and the migration of nuclei from the basidium into developing spores. We have investigated the roles of the cytoskeleton in these processes using cytoskeleton mutants as well as fluorescence microscopy. Some of the α1- and β1-tubulin mutations examined blocked nuclear migration in dikaryosis and disturbed nuclear pairing in the dikaryon, demonstrating that microtubules are involved in these processes. The same mutations, however, did not affect the positioning of nuclei in interphase nor in conjugate division in the dikaryon, nor the migration of nuclei into the developing spores. Immunofluorescence microscopy revealed that these mutations inhibit the formation of asters of the mitotic apparatus in conjugate division, providing evidence against direct involvement of astral microtubules in nuclear movement during conjugate division. Actin was concentrated in hyphal regions where the nuclei sit in early phases of conjugate division, suggesting the involvement of actin in conjugate division. Key words: Coprinus cinereus, dikaryon, nuclear movement, microtubules, aster, actin.


Genetics ◽  
2002 ◽  
Vol 162 (3) ◽  
pp. 1179-1195 ◽  
Author(s):  
Jun-Yuan Ji ◽  
Marjan Haghnia ◽  
Cory Trusty ◽  
Lawrence S B Goldstein ◽  
Gerold Schubiger

Abstract Coordination between cell-cycle progression and cytoskeletal dynamics is important for faithful transmission of genetic information. In early Drosophila embryos, increasing maternal cyclin B leads to higher Cdk1-CycB activity, shorter microtubules, and slower nuclear movement during cycles 5-7 and delays in nuclear migration to the cortex at cycle 10. Later during cycle 14 interphase of six cycB embryos, we observed patches of mitotic nuclei, chromosome bridges, abnormal nuclear distribution, and small and large nuclei. These phenotypes indicate disrupted coordination between the cell-cycle machinery and cytoskeletal function. Using these sensitized phenotypes, we performed a dosage-sensitive genetic screen to identify maternal proteins involved in this process. We identified 10 suppressors classified into three groups: (1) gene products regulating Cdk1 activities, cdk1 and cyclin A; (2) gene products interacting with both microtubules and microfilaments, Actin-related protein 87C; and (3) gene products interacting with microfilaments, chickadee, diaphanous, Cdc42, quail, spaghetti-squash, zipper, and scrambled. Interestingly, most of the suppressors that rescue the astral microtubule phenotype also reduce Cdk1-CycB activities and are microfilament-related genes. This suggests that the major mechanism of suppression relies on the interactions among Cdk1-CycB, microtubule, and microfilament networks. Our results indicate that the balance among these different components is vital for normal early cell cycles and for embryonic development. Our observations also indicate that microtubules and cortical microfilaments antagonize each other during the preblastoderm stage.


Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1245-1254 ◽  
Author(s):  
W. Sullivan ◽  
P. Fogarty ◽  
W. Theurkauf

Cytoplasmic organization, nuclear migration, and nuclear division in the early syncytial Drosophila embryo are all modulated by the cytoskeleton. In an attempt to identify genes involved in cytoskeletal functions, we have examined a collection of maternal-effect lethal mutations induced by single P-element transposition for those that cause defects in nuclear movement, organization, or morphology during the syncytial embryonic divisions. We describe three mutations, grapes, scrambled, and nuclear-fallout, which define three previously uncharacterized genes. Females homozygous for these mutations produce embryos that exhibit extensive mitotic division errors only after the nuclei migrate to the surface. Analysis of the microfilament and microtubule organization in embryos derived from these newly identified mutations reveal disruptions in the cortical cytoskeleton. Each of the three mutations disrupts the actin-based pseudocleavage furrows and the cellularization furrows in a distinct fashion. In addition to identifying new genes involved in cytoskeletal organization, these mutations provide insights into cytoskeletal function during early Drosophila embryogenesis.


1987 ◽  
Vol 7 (10) ◽  
pp. 3799-3805
Author(s):  
P J Schatz ◽  
G E Georges ◽  
F Solomon ◽  
D Botstein

Microtubules in yeasts are essential components of the mitotic and meiotic spindle and are necessary for nuclear movement during cell division and mating. The yeast Saccharomyces cerevisiae has two alpha-tubulin genes, TUB1 and TUB3, either of which alone is sufficient for these processes when present in a high enough copy number. Comparisons of sequences from several species reveals the presence of a variable region near the amino terminus of alpha-tubulin proteins. We perturbed the structure of this region in TUB3 by inserting into it 3, 9, or 17 amino acids and tested the ability of these altered proteins to function as the only alpha-tubulin protein in yeast cells. We found that each of these altered proteins was sufficient on its own for mitotic growth, mating, and methods of yeast. We conclude that this region can tolerate considerable variation without losing any of the highly conserved functions of alpha-tubulin. Our results suggest that variability in this region occurs because it can be tolerated, not because it specifies an important function for the protein.


Sign in / Sign up

Export Citation Format

Share Document