scholarly journals Relation between Maximal Anaerobic Power Output and Tests on Rowing Ergometer

2017 ◽  
Vol 57 (1) ◽  
pp. 68-75a ◽  
Author(s):  
Matej Šmída ◽  
Michal Clementis ◽  
Dušan Hamar ◽  
Yvetta Macejková

SummaryAim of this study was to compare relation between maximal anaerobic power output and 2,000 m test on rowing ergometer and relation between 6,000 m test and 2,000 m on rowing ergometer. It can be assumed that 2,000 m performance on rowing ergometer will significantly correlate with maximal anaerobic power output and 6,000 m performance. A group of 9 welltrained rowers (age: 18.3 years ± 2.8 years, sport age: 4.9 years ± 3.7 years, weight: 78.9 kg ± 12.2 kg, height: 182.3 cm ± 7.6 cm) performed three tests in 1 week to determine maximal anaerobic power, 6,000 m and 2,000 m performance on Concept 2 model D rowing ergometer. A value of simple maximal stroke out of 10-second all-out test with drag factor set to 200 was taken as a measure of maximal anaerobic power. Drag factor for 6,000 m and 2,000 m test was set individually. Average power during these tests was record. Research showed that both maximal anaerobic power and 6,000 m test correlated with 2,000 m test on rowing ergometer significantly (rmap= 0.93 p < 0.01, r6k= 0.95 p < 0.01). Maximal anaerobic power and 6,000 m tests seem to be good predictors for 2,000 m score on rowing ergometer. However, maximal anaerobic power test can be used to monitor rowing performance during specific training cycle instead of longer and more demanding 6,000 m test.

2001 ◽  
Vol 17 (3) ◽  
pp. 204-216 ◽  
Author(s):  
Raoul F. Reiser ◽  
Michael L. Peterson ◽  
Jeffrey P. Broker

While the recumbent cycling position has become common for high-performance human-powered vehicles, questions still remain as to the influence of familiarity on recumbent cycling, the optimal riding position, and how recumbent cycling positions compare to the standard cycling position (SCP). Eight recumbent-familiar cyclists and 10 recreational control cyclists were compared using the 30-s Wingate test in 5 recumbent positions as well as the SCP. For the recumbent positions, hip position was maintained 15° below the bottom bracket while the backrest was altered to investigate body configuration angle (BCA: the angle between the bottom bracket, hip, and a marker at mid-torso) changes from 100° to 140° in 10° increments. Between-groups analysis found that only 4 of the 126 analyzed parameters differed significantly, with all trends in the same direction. Therefore both groups were combined for further analysis. Whole-group peak power (14.6 W/kg body mass) and average power (9.9 and 9.8 W/kg body mass, respectively) were greatest in the 130° and 140° BCA positions, with power dropping off as BCA decreased through 100° (peak = 12.4 W/kg body mass; avg. = 9.0 W/kg body mass). Power output in the SCP (peak = 14.6 W/kg body mass; avg. = 9.7 W/kg body mass) was similar to that produced in the 130° and 140° recumbent BCA. Average hip and ankle angles increased (became more extended/ plantar-flexed), 36° and 10°, respectively, with recumbent BCA, while knee angles remained constant. The lower extremity kinematics of the 130° and 140° BCA were most similar to those of the SCP. However, SCP hip and knee joints were slightly extended and the ankle joint was slightly plantar-flexed compared to these two recumbent positions, even though the BCA of the SCP was not significantly different. These findings suggest: (a) the amount of recumbent familiarity in this study did not produce changes in power output or kinematics; (b) BCA is a major determinant of power output; and (c) recumbent-position anaerobic power output matches that of the SCP when BCA is maintained, even though lower extremity kinematics may be altered.


2015 ◽  
Vol 10 (8) ◽  
pp. 1015-1022 ◽  
Author(s):  
Jelle de Jong ◽  
Linda van der Meijden ◽  
Simone Hamby ◽  
Samantha Suckow ◽  
Christopher Dodge ◽  
...  

Purpose:To reach top performance in cycling, optimizing distribution of energy resources is crucial. The purpose of this study was to investigate power output during 250-m, 500-m, and 1000-m cycling time trials and the characteristics of the adopted pacing strategy.Methods:Nine trained cyclists completed an incremental test and 3 time trials that they were instructed to finish as quickly as possible. Preceding the trials, peak power during short sprints (PPsprint) and gross efficiency (GE) were measured. During the trials, power output and oxygen consumption were measured to calculate the contribution of the aerobic and anaerobic energy sources. After the trial GE was measured again.Results:Peak power during all trials (PPTT) was lower than PPsprint. In the 250-m trial the PPTT was higher in the 1000-m trial (P = .008). The subjects performed a significantly longer time at high intensity in the 250-m than in the 1000-m (P = .029). GE declined significantly during all trials (P < .01). Total anaerobically attributable work was less in the 250-m than in the 500-m (P = .015) and 1000-m (P < .01) trials.Conclusion:The overall pacing pattern in the 250-m trial appears to follow an all-out strategy, although peak power is still lower than the potential maximal power output. This suggests that a true all-out pattern of power output may not be used in fixed-distance events. The 500-m and 1000-m had a more conservative pacing pattern and anaerobic power output reached a constant magnitude.


1992 ◽  
Vol 24 (Supplement) ◽  
pp. S99
Author(s):  
J. Meshil ◽  
J. Wygand ◽  
R. M. Otto ◽  
A. Bideaux

Sign in / Sign up

Export Citation Format

Share Document