scholarly journals An advance in infinite graph models for the analysis of transportation networks

2016 ◽  
Vol 26 (4) ◽  
pp. 855-869
Author(s):  
Martín Cera ◽  
Eugenio M. Fedriani

Abstract This paper extends to infinite graphs the most general extremal issues, which are problems of determining the maximum number of edges of a graph not containing a given subgraph. It also relates the new results with the corresponding situations for the finite case. In particular, concepts from ‘finite’ graph theory, like the average degree and the extremal number, are generalized and computed for some specific cases. Finally, some applications of infinite graphs to the transportation of dangerous goods are presented; they involve the analysis of networks and percolation thresholds.

10.37236/2891 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Reinhard Diestel

Developing further Stein's recent notion of relative end degrees in infinite graphs, we investigate which degree assumptions can force a locally finite graph to contain a given finite minor, or a finite subgraph of given minimum or average degree. This is part of a wider project which seeks to develop an extremal theory of sparse infinite graphs.


2021 ◽  
Vol 9 ◽  
Author(s):  
Anton Bernshteyn ◽  
Clinton T. Conley

Abstract Hajnal and Szemerédi proved that if G is a finite graph with maximum degree $\Delta $ , then for every integer $k \geq \Delta +1$ , G has a proper colouring with k colours in which every two colour classes differ in size at most by $1$ ; such colourings are called equitable. We obtain an analogue of this result for infinite graphs in the Borel setting. Specifically, we show that if G is an aperiodic Borel graph of finite maximum degree $\Delta $ , then for each $k \geq \Delta + 1$ , G has a Borel proper k-colouring in which every two colour classes are related by an element of the Borel full semigroup of G. In particular, such colourings are equitable with respect to every G-invariant probability measure. We also establish a measurable version of a result of Kostochka and Nakprasit on equitable $\Delta $ -colourings of graphs with small average degree. Namely, we prove that if $\Delta \geq 3$ , G does not contain a clique on $\Delta + 1$ vertices and $\mu $ is an atomless G-invariant probability measure such that the average degree of G with respect to $\mu $ is at most $\Delta /5$ , then G has a $\mu $ -equitable $\Delta $ -colouring. As steps toward the proof of this result, we establish measurable and list-colouring extensions of a strengthening of Brooks’ theorem due to Kostochka and Nakprasit.


10.37236/3046 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Simon M. Smith ◽  
Mark E. Watkins

A group of permutations $G$ of a set $V$ is $k$-distinguishable if there exists a partition of $V$ into $k$ cells such that only the identity permutation in $G$ fixes setwise all of the cells of the partition. The least cardinal number $k$ such that $(G,V)$ is $k$-distinguishable is its distinguishing number $D(G,V)$. In particular, a graph $\Gamma$ is $k$-distinguishable if its automorphism group $\rm{Aut}(\Gamma)$ satisfies $D(\rm{Aut}(\Gamma),V\Gamma)\leq k$.Various results in the literature demonstrate that when an infinite graph fails to have some property, then often some finite subgraph is similarly deficient. In this paper we show that whenever an infinite connected graph $\Gamma$ is not $k$-distinguishable (for a given cardinal $k$), then it contains a ball of finite radius whose distinguishing number is at least $k$. Moreover, this lower bound cannot be sharpened, since for any integer $k \geq 3$ there exists an infinite, locally finite, connected graph $\Gamma$ that is not $k$-distinguishable but in which every ball of finite radius is $k$-distinguishable.In the second half of this paper we show that a large distinguishing number for an imprimitive group $G$ is traceable to a high distinguishing number either of a block of imprimitivity or of the induced action by $G$ on the corresponding system of imprimitivity. An immediate application is to automorphism groups of infinite imprimitive graphs. These results are companion to the study of the distinguishing number of infinite primitive groups and graphs in a previous paper by the authors together with T. W. Tucker.


10.37236/771 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Andrzej Dudek ◽  
Vojtěch Rödl

Let $G^{(\infty)}$ be an infinite graph with the vertex set corresponding to the set of positive integers ${\Bbb N}$. Denote by $G^{(l)}$ a subgraph of $G^{(\infty)}$ which is spanned by the vertices $\{1,\dots,l\}$. As a possible extension of Turán's theorem to infinite graphs, in this paper we will examine how large $\liminf_{l\rightarrow \infty} {|E(G^{(l)})|\over l^2}$ can be for an infinite graph $G^{(\infty)}$, which does not contain an increasing path $I_k$ with $k+1$ vertices. We will show that for sufficiently large $k$ there are $I_k$–free infinite graphs with ${1\over 4}+{1\over 200} < \liminf_{l\rightarrow \infty} {|E(G^{(l)})|\over l^2}$. This disproves a conjecture of J. Czipszer, P. Erdős and A. Hajnal. On the other hand, we will show that $\liminf_{l\rightarrow \infty} {|E(G^{(l)})|\over l^2}\le{1\over 3}$ for any $k$ and such $G^{(\infty)}$.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Jordan Barrett ◽  
Valentino Vito

For fixed finite graphs $G$, $H$, a common problem in Ramsey theory is to study graphs $F$ such that $F \to (G,H)$, i.e. every red-blue coloring of the edges of $F$ produces either a red $G$ or a blue $H$. We generalize this study to infinite graphs $G$, $H$; in particular, we want to determine if there is a minimal such $F$. This problem has strong connections to the study of self-embeddable graphs: infinite graphs which properly contain a copy of themselves. We prove some compactness results relating this problem to the finite case, then give some general conditions for a pair $(G,H)$ to have a Ramsey-minimal graph. We use these to prove, for example, that if $G=S_\infty$ is an infinite star and $H=nK_2$, $n \geqslant 1$ is a matching, then the pair $(S_\infty,nK_2)$ admits no Ramsey-minimal graphs.


10.37236/394 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Ryan Martin ◽  
Brendon Stanton

An $r$-identifying code on a graph $G$ is a set $C\subset V(G)$ such that for every vertex in $V(G)$, the intersection of the radius-$r$ closed neighborhood with $C$ is nonempty and unique. On a finite graph, the density of a code is $|C|/|V(G)|$, which naturally extends to a definition of density in certain infinite graphs which are locally finite. We present new lower bounds for densities of codes for some small values of $r$ in both the square and hexagonal grids.


10.37236/2832 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Henning Bruhn

We relate matroid connectivity to Tutte-connectivity in an infinite graph. Moreover, we show that the two cycle matroids, the finite-cycle matroid and the cycle matroid, in which also infinite cycles are taken into account, have the same connectivity function. As an application we re-prove that, also for infinite graphs, Tutte-connectivity is invariant under taking dual graphs.


2018 ◽  
Vol 10 (3) ◽  
pp. 7-22
Author(s):  
Paweł Sobczak ◽  
Ewa Stawiarska ◽  
Judit Oláh ◽  
József Popp ◽  
Tomas Kliestik

Abstract The main purpose of the paper was the structural analysis of the connections network used by a railway carrier Koleje Dolnośląskie S.A. operating in southern Poland. The analysis used simulation methods. The analysis and simulation were based on graph theory, which is successfully used in analysing a wide variety of networks (social, biological, computer, virtual and transportation networks). The paper presents indicators which allow judging the analysed connections network according to an appropriate level of transport services. Simulation results allowed proposing some modifications for the improvement of the analysed connections network. The paper also demonstrates that graph theory and network simulations should be used as tools by transportation companies during the stage of planning a connections network.


2016 ◽  
Vol 15 (05) ◽  
pp. 1650084 ◽  
Author(s):  
Jason P. Bell ◽  
T. H. Lenagan ◽  
Kulumani M. Rangaswamy

Leavitt path algebras [Formula: see text] of an arbitrary graph [Formula: see text] over a field [Formula: see text] satisfying a polynomial identity are completely characterized both in graph-theoretic and algebraic terms. When [Formula: see text] is a finite graph, [Formula: see text] satisfying a polynomial identity is shown to be equivalent to the Gelfand–Kirillov dimension of [Formula: see text] being at most one, though this is no longer true for infinite graphs. It is shown that, for an arbitrary graph [Formula: see text], the Leavitt path algebra [Formula: see text] has Gelfand–Kirillov dimension zero if and only if [Formula: see text] has no cycles. Likewise, [Formula: see text] has Gelfand–Kirillov dimension one if and only if [Formula: see text] contains at least one cycle, but no cycle in [Formula: see text] has an exit.


10.37236/622 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
R. Bruce Richter ◽  
Brendan Rooney

Casteels and Richter have shown that if $X$ and $Y$ are distinct compactifications of a locally finite graph $G$ and $f:X\to Y$ is a continuous surjection such that $f$ restricts to a homeomorphism on $G$, then the cycle space $Z_X$ of $X$ is contained in the cycle space $Z_Y$ of $Y$. In this work, we show how to extend a basis for $Z_X$ to a basis of $Z_Y$.


Sign in / Sign up

Export Citation Format

Share Document