scholarly journals On Ramsey-Minimal Infinite Graphs

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Jordan Barrett ◽  
Valentino Vito

For fixed finite graphs $G$, $H$, a common problem in Ramsey theory is to study graphs $F$ such that $F \to (G,H)$, i.e. every red-blue coloring of the edges of $F$ produces either a red $G$ or a blue $H$. We generalize this study to infinite graphs $G$, $H$; in particular, we want to determine if there is a minimal such $F$. This problem has strong connections to the study of self-embeddable graphs: infinite graphs which properly contain a copy of themselves. We prove some compactness results relating this problem to the finite case, then give some general conditions for a pair $(G,H)$ to have a Ramsey-minimal graph. We use these to prove, for example, that if $G=S_\infty$ is an infinite star and $H=nK_2$, $n \geqslant 1$ is a matching, then the pair $(S_\infty,nK_2)$ admits no Ramsey-minimal graphs.

2020 ◽  
Vol 29 (4) ◽  
pp. 537-554
Author(s):  
Dennis Clemens ◽  
Anita Liebenau ◽  
Damian Reding

AbstractFor an integer q ⩾ 2, a graph G is called q-Ramsey for a graph H if every q-colouring of the edges of G contains a monochromatic copy of H. If G is q-Ramsey for H yet no proper subgraph of G has this property, then G is called q-Ramsey-minimal for H. Generalizing a statement by Burr, Nešetřil and Rödl from 1977, we prove that, for q ⩾ 3, if G is a graph that is not q-Ramsey for some graph H, then G is contained as an induced subgraph in an infinite number of q-Ramsey-minimal graphs for H as long as H is 3-connected or isomorphic to the triangle. For such H, the following are some consequences.For 2 ⩽ r < q, every r-Ramsey-minimal graph for H is contained as an induced subgraph in an infinite number of q-Ramsey-minimal graphs for H.For every q ⩾ 3, there are q-Ramsey-minimal graphs for H of arbitrarily large maximum degree, genus and chromatic number.The collection $\{\mathcal M_q(H) \colon H \text{ is 3-connected or } K_3\}$ forms an antichain with respect to the subset relation, where $\mathcal M_q(H)$ denotes the set of all graphs that are q-Ramsey-minimal for H.We also address the question of which pairs of graphs satisfy $\mathcal M_q(H_1)=\mathcal M_q(H_2)$ , in which case H1 and H2 are called q-equivalent. We show that two graphs H1 and H2 are q-equivalent for even q if they are 2-equivalent, and that in general q-equivalence for some q ⩾ 3 does not necessarily imply 2-equivalence. Finally we indicate that for connected graphs this implication may hold: results by Nešetřil and Rödl and by Fox, Grinshpun, Liebenau, Person and Szabó imply that the complete graph is not 2-equivalent to any other connected graph. We prove that this is the case for an arbitrary number of colours.


2016 ◽  
Vol 32 (6) ◽  
pp. 2575-2589
Author(s):  
Seongmin Ok ◽  
R. Bruce Richter ◽  
Carsten Thomassen

10.37236/6083 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Johannes Carmesin

Answering a question of Diestel, we develop a topological notion of gammoids in infinite graphs which, unlike traditional infinite gammoids, always define a matroid.As our main tool, we prove for any infinite graph $G$ with vertex-sets $A$ and $B$, if every finite subset of $A$ is linked to $B$ by disjoint paths, then the whole of $A$ can be linked to the closure of $B$ by disjoint paths or rays in a natural topology on $G$ and its ends.This latter theorem implies the topological Menger theorem of Diestel for locally finite graphs. It also implies a special case of the infinite Menger theorem of Aharoni and Berger.


2009 ◽  
Vol 86 (1) ◽  
pp. 75-95 ◽  
Author(s):  
ROBERT HUFF ◽  
JOHN MCCUAN

AbstractWe construct global solutions of the minimal surface equation over certain smooth annular domains and over the domain exterior to certain smooth simple closed curves. Each resulting minimal graph has an isolated jump discontinuity on the inner boundary component which, at least in some cases, is shown to have nonvanishing curvature.


2020 ◽  
Vol 2020 (769) ◽  
pp. 121-164 ◽  
Author(s):  
Serena Dipierro ◽  
Ovidiu Savin ◽  
Enrico Valdinoci

AbstractThe main goal of this article is to understand the trace properties of nonlocal minimal graphs in {\mathbb{R}^{3}}, i.e. nonlocal minimal surfaces with a graphical structure.We establish that at any boundary points at which the trace from inside happens to coincide with the exterior datum, also the tangent planes of the traces necessarily coincide with those of the exterior datum.This very rigid geometric constraint is in sharp contrast with the case of the solutions of the linear equations driven by the fractional Laplacian, since we also show that, in this case, the fractional normal derivative can be prescribed arbitrarily, up to a small error.We remark that, at a formal level, the linearization of the trace of a nonlocal minimal graph is given by the fractional normal derivative of a fractional Laplace problem, therefore the two problems are formally related. Nevertheless, the nonlinear equations of fractional mean curvature type present very specific properties which are strikingly different from those of other problems of fractional type which are apparently similar, but diverse in structure, and the nonlinear case given by the nonlocal minimal graphs turns out to be significantly more rigid than its linear counterpart.


2016 ◽  
Vol 26 (4) ◽  
pp. 855-869
Author(s):  
Martín Cera ◽  
Eugenio M. Fedriani

Abstract This paper extends to infinite graphs the most general extremal issues, which are problems of determining the maximum number of edges of a graph not containing a given subgraph. It also relates the new results with the corresponding situations for the finite case. In particular, concepts from ‘finite’ graph theory, like the average degree and the extremal number, are generalized and computed for some specific cases. Finally, some applications of infinite graphs to the transportation of dangerous goods are presented; they involve the analysis of networks and percolation thresholds.


10.37236/6773 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Karl Heuer

We state a sufficient condition for the square of a locally finite graph to contain a Hamilton circle, extending a result of Harary and Schwenk about finite graphs. We also give an alternative proof of an extension to locally finite graphs of the result of Chartrand and Harary that a finite graph not containing $K^4$ or $K_{2,3}$ as a minor is Hamiltonian if and only if it is $2$-connected. We show furthermore that, if a Hamilton circle exists in such a graph, then it is unique and spanned by the $2$-contractible edges. The third result of this paper is a construction of a graph which answers positively the question of Mohar whether regular infinite graphs with a unique Hamilton circle exist.


2009 ◽  
Vol 19 (1) ◽  
pp. 133-152 ◽  
Author(s):  
BAKHADYR KHOUSSAINOV ◽  
JIAMOU LIU ◽  
MIA MINNES

This paper studies infinite graphs produced from a natural unfolding operation applied to finite graphs. Graphs produced using such operations are of finite degree and automatic over the unary alphabet (that is, they can be described by finite automata over the unary alphabet). We investigate algorithmic properties of such unfolded graphs given their finite presentations. In particular, we ask whether a given node belongs to an infinite component, whether two given nodes in the graph are reachable from one another and whether the graph is connected. We give polynomial-time algorithms for each of these questions. For a fixed input graph, the algorithm for the first question is in constant time and the second question is decided using an automaton that recognises the reachability relation in a uniform way. Hence, we improve on previous work, in which non-elementary or non-uniform algorithms were found.


2012 ◽  
Vol 88 (2) ◽  
pp. 206-217 ◽  
Author(s):  
HOSSEIN LARKI ◽  
ABDOLHAMID RIAZI

AbstractThe stable rank of Leavitt path algebras of row-finite graphs was computed by Ara and Pardo. In this paper we extend this to an arbitrary directed graph. In part our computation proceeds as for the row-finite case, but we also use knowledge of the row-finite setting by applying the desingularising method due to Drinen and Tomforde. In particular, we characterise purely infinite simple quotients of a Leavitt path algebra.


Sign in / Sign up

Export Citation Format

Share Document