scholarly journals Equitable colourings of Borel graphs

2021 ◽  
Vol 9 ◽  
Author(s):  
Anton Bernshteyn ◽  
Clinton T. Conley

Abstract Hajnal and Szemerédi proved that if G is a finite graph with maximum degree $\Delta $ , then for every integer $k \geq \Delta +1$ , G has a proper colouring with k colours in which every two colour classes differ in size at most by $1$ ; such colourings are called equitable. We obtain an analogue of this result for infinite graphs in the Borel setting. Specifically, we show that if G is an aperiodic Borel graph of finite maximum degree $\Delta $ , then for each $k \geq \Delta + 1$ , G has a Borel proper k-colouring in which every two colour classes are related by an element of the Borel full semigroup of G. In particular, such colourings are equitable with respect to every G-invariant probability measure. We also establish a measurable version of a result of Kostochka and Nakprasit on equitable $\Delta $ -colourings of graphs with small average degree. Namely, we prove that if $\Delta \geq 3$ , G does not contain a clique on $\Delta + 1$ vertices and $\mu $ is an atomless G-invariant probability measure such that the average degree of G with respect to $\mu $ is at most $\Delta /5$ , then G has a $\mu $ -equitable $\Delta $ -colouring. As steps toward the proof of this result, we establish measurable and list-colouring extensions of a strengthening of Brooks’ theorem due to Kostochka and Nakprasit.

2016 ◽  
Vol 26 (4) ◽  
pp. 855-869
Author(s):  
Martín Cera ◽  
Eugenio M. Fedriani

Abstract This paper extends to infinite graphs the most general extremal issues, which are problems of determining the maximum number of edges of a graph not containing a given subgraph. It also relates the new results with the corresponding situations for the finite case. In particular, concepts from ‘finite’ graph theory, like the average degree and the extremal number, are generalized and computed for some specific cases. Finally, some applications of infinite graphs to the transportation of dangerous goods are presented; they involve the analysis of networks and percolation thresholds.


10.37236/2891 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Reinhard Diestel

Developing further Stein's recent notion of relative end degrees in infinite graphs, we investigate which degree assumptions can force a locally finite graph to contain a given finite minor, or a finite subgraph of given minimum or average degree. This is part of a wider project which seeks to develop an extremal theory of sparse infinite graphs.


1982 ◽  
Vol 2 (2) ◽  
pp. 139-158 ◽  
Author(s):  
S. G. Dani

AbstractLet(where t ε ℝ) and let μ be the G-invariant probability measure on G/Γ. We show that if x is a non-periodic point of the flow given by the (ut)-action on G/Γ then the (ut)-orbit of x is uniformly distributed with respect to μ; that is, if Ω is an open subset whose boundary has zero measure, and l is the Lebesque measure on ℝ then, as T→∞, converges to μ(Ω).


10.37236/394 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Ryan Martin ◽  
Brendon Stanton

An $r$-identifying code on a graph $G$ is a set $C\subset V(G)$ such that for every vertex in $V(G)$, the intersection of the radius-$r$ closed neighborhood with $C$ is nonempty and unique. On a finite graph, the density of a code is $|C|/|V(G)|$, which naturally extends to a definition of density in certain infinite graphs which are locally finite. We present new lower bounds for densities of codes for some small values of $r$ in both the square and hexagonal grids.


2019 ◽  
Vol 23 ◽  
pp. 797-802
Author(s):  
Raphaël Cerf ◽  
Joseba Dalmau

Let A be a primitive matrix and let λ be its Perron–Frobenius eigenvalue. We give formulas expressing the associated normalized Perron–Frobenius eigenvector as a simple functional of a multitype Galton–Watson process whose mean matrix is A, as well as of a multitype branching process with mean matrix e(A−I)t. These formulas are generalizations of the classical formula for the invariant probability measure of a Markov chain.


2015 ◽  
Vol 58 (3) ◽  
pp. 471-485 ◽  
Author(s):  
Seckin Demirbas

AbstractIn a previous paper, we proved that the 1-d periodic fractional Schrödinger equation with cubic nonlinearity is locally well-posed inHsfors> 1 −α/2 and globally well-posed fors> 10α− 1/12. In this paper we define an invariant probability measureμonHsfors<α− 1/2, so that for any ∊ > 0 there is a set Ω ⊂Hssuch thatμ(Ωc) <∊and the equation is globally well-posed for initial data in Ω. We see that this fills the gap between the local well-posedness and the global well-posedness range in an almost sure sense forin an almost sure sense.


2013 ◽  
Vol 35 (3) ◽  
pp. 835-853 ◽  
Author(s):  
HONGFEI CUI ◽  
YIMING DING

AbstractFor an interval map whose critical point set may contain critical points with different one-sided critical orders and jump discontinuities, under a mild condition on critical orbits, we prove that it has an invariant probability measure which is absolutely continuous with respect to Lebesgue measure by using the methods of Bruin et al [Invent. Math. 172(3) (2008), 509–533], together with ideas from Nowicki and van Strien [Invent. Math. 105(1) (1991), 123–136]. We also show that it admits no wandering intervals.


2016 ◽  
Vol 15 (05) ◽  
pp. 1650084 ◽  
Author(s):  
Jason P. Bell ◽  
T. H. Lenagan ◽  
Kulumani M. Rangaswamy

Leavitt path algebras [Formula: see text] of an arbitrary graph [Formula: see text] over a field [Formula: see text] satisfying a polynomial identity are completely characterized both in graph-theoretic and algebraic terms. When [Formula: see text] is a finite graph, [Formula: see text] satisfying a polynomial identity is shown to be equivalent to the Gelfand–Kirillov dimension of [Formula: see text] being at most one, though this is no longer true for infinite graphs. It is shown that, for an arbitrary graph [Formula: see text], the Leavitt path algebra [Formula: see text] has Gelfand–Kirillov dimension zero if and only if [Formula: see text] has no cycles. Likewise, [Formula: see text] has Gelfand–Kirillov dimension one if and only if [Formula: see text] contains at least one cycle, but no cycle in [Formula: see text] has an exit.


2016 ◽  
Vol 37 (5) ◽  
pp. 1413-1442 ◽  
Author(s):  
CARLOS BOCKER-NETO ◽  
MARCELO VIANA

The Lyapunov exponents of locally constant$\text{GL}(2,\mathbb{C})$-cocycles over Bernoulli shifts vary continuously with the cocycle and the invariant probability measure.


Sign in / Sign up

Export Citation Format

Share Document