scholarly journals Rapid Prototyping: Technologies, Materials and Advances

2016 ◽  
Vol 61 (2) ◽  
pp. 891-896 ◽  
Author(s):  
P. Dudek ◽  
A. Rapacz-Kmita

AbstractIn the context of product development, the term rapid prototyping (RP) is widely used to describe technologies which create physical prototypes directly from digital data. Recently, this technology has become one of the fastest-growing methods of manufacturing parts. The paper provides brief notes on the creation of composites using RP methods, such as stereolithography, selective laser sintering or melting, laminated object modelling, fused deposition modelling or three-dimensional printing. The emphasis of this work is on the methodology of composite fabrication and the variety of materials used in these technologies.

Author(s):  
Szymon Mania ◽  
Adrianna Banach ◽  
Robert Tylingo

Three-dimensional (3D) biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative solutions in the biomedical sector, including drug delivery systems, disease modelling and tissue and organ engineering. Due to its remarkable and promising biological and structural properties, chitosan has been widely studied for decades in several potential applications in the biomedical field. However, tools in the form of 3D printers have created new possibilities for the production of chitosan models, implants and scaffolds for cell cultures that are much more precise than existing ones. The article presents current achievements related to the possibility of using chitosan to create new materials for 3D printing in the form of chitosan bioinks, filaments, resins and powders dedicated for bioprinting, fused deposition modelling, stereolithography/digital light processing and selective laser sintering methods, respectively


2021 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Nuno Venâncio ◽  
Gabriela G. Pereira ◽  
João F. Pinto ◽  
Ana I. Fernandes

Patient-centric therapy is especially important in pediatrics and may be attained by three-dimensional printing. Filaments containing 30% w/w of theophylline were produced by hot-melt extrusion and printed using fused deposition modelling to produce tablets. Here, preliminary results evaluating the effect of infill geometry (cross, star, grid) on drug content and release are reported.


2010 ◽  
Vol 441 ◽  
pp. 155-179 ◽  
Author(s):  
Ulrike Deisinger

For tissue regeneration in medicine three-dimensional scaffolds with specific characteristics are required. A very important property is a high, interconnecting porosity to enable tissue ingrowth into the scaffold. Pore size distribution and pore geometry should be adapted to the respective tissue. Additionally, the scaffolds should have a basic stability for handling during implantation, which is provided by ceramic scaffolds. Various methods to produce such ceramic 3D scaffolds exist. In this paper conventional and new fabrication techniques are reviewed. Conventional methods cover the replica of synthetic and natural templates, the use of sacrificial templates and direct foaming. Rapid prototyping techniques are the new methods listed in this work. They include fused deposition modelling, robocasting and dispense-plotting, ink jet printing, stereolithography, 3D-printing, selective laser sintering/melting and a negative mould technique also involving rapid prototyping. The various fabrication methods are described and the characteristics of the resulting scaffolds are pointed out. Finally, the techniques are compared to find out their disadvantages and advantages.


2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Mohammad Adhitya ◽  
◽  
Sunarso Sunarso ◽  
Abdul Muis ◽  
◽  
...  

The application of three-dimensional (3D) models in the medical field has become popular. However, the accuracy of 3D models for surgical guidance varies among different materials and 3D printing technologies, such as printing machine usage. Objectives: This study aims to obtain more information about the effect of three different materials printed using a fused deposition material printer from the same digital data source. This study also aims to compare, analyze, and test the materials’ ability. Methods: Each of the filament materials (acetylbutane stearate [ABS], polylactic acid [PLA], and high-impact polystyrene [HIPS]) are printed at two infill densities, their weight, volume, and dimension are measured, and infill materials are prepared. Printing time is estimated and calculated on the basis of printing properties by using Simplify3D© software. The strength and surface tension of each sample are examined via a drilling test. Results: PLA is better than ABS and HIPS for printing our 3D model because of its properties. Conclusion: Ideal 3D materials for printing 3D models should fulfill the criteria on accuracy, strength, weight, and durability for usage. However, production time and cost should also be considered.


POROS ◽  
2017 ◽  
Vol 14 (2) ◽  
pp. 107
Author(s):  
Cristian Awi ◽  
Gatot Soeharsono ◽  
Didi Widya Utama

Abstract: Fused deposition modeling is a rapid prototyping process that is very popular. Fused deposition modeling is actually one method of Three -dimensional printing. Fused deposition modeling process , namely by heating the thermoplastic material and then do the printing . Our focus is to learn, the engine control system fused deposition modeling with software arduino 1.6.8 with firmware marlin and other software 3d printer. experimental control system is done by testing the direction of motion and measuring the distance and then test the form . Making fused deposition modeling is intended as a prototype in order to understand the control system and how to innovate in the development of fused deposition modeling. The results of the control system in the form of a fused depositon modeling engine capable of running as expected and can create a physical model. 


2020 ◽  
Vol 15 ◽  
pp. 155892502092459 ◽  
Author(s):  
Michael Korger ◽  
Alexandra Glogowsky ◽  
Silke Sanduloff ◽  
Christine Steinem ◽  
Sofie Huysman ◽  
...  

Three-dimensional printing has already been shown to be beneficial to the fabrication of custom-fit and functional products in different industry sectors such as orthopaedics, implantology and dental technology. Especially in personal protective equipment and sportswear, three-dimensional printing offers opportunities to produce functional garments fitted to body contours by directly printing protective and (posture) supporting elements on textiles. In this article, different flexible thermoplastic elastomers, namely, thermoplastic polyurethanes and thermoplastic styrene block copolymers with a Shore hardness range of 67A–86A are tested as suitable printing materials by means of extrusion-based fused deposition modelling. For this, adhesion force, abrasion and wash resistance tests are conducted using various knitted and woven workwear and sportswear fabrics primarily made of cotton, polyester or aramid as textile substrates. Due to polar interactions between thermoplastic polyurethane and textile substrates, excellent adhesion and high fastness to washing is observed. While fused-deposition-modelling-printed polyether-based thermoplastic polyurethane polymers keep their abrasion–resistant properties, polyester-based thermoplastic polyurethanes are more prone to hydrolysis and can be partially degraded if presence of moisture cannot be excluded during polymer processing and printing. Thermoplastic styrene compounds generally exhibit lower adhesion and abrasion resistance, but these properties can be sufficient depending on the requirements of a particular application. Soft thermoplastic styrene filaments can be processed down to a Shore hardness of 70A resulting in three-dimensional printed parts with good quality and comfortable soft-touch surface. Finally, three demonstrator case studies are presented covering the entire process to realize the customized and three-dimensional printed textile. This encompasses product development and fabrication of a textile integrated custom-fit back protector and knee protector as well as customized functionalization of a technical interior textile for improved acoustic comfort. In the future, printing material modifications by compounding processes have to be taken into account for optimized functional performance.


2018 ◽  
Vol 222 ◽  
pp. 01013 ◽  
Author(s):  
Katarzyna Pacewicz ◽  
Anna Sobotka ◽  
Łukasz Gołek

Three dimensional printing is a promising new technology to erect construction objects. Around the world in every moment a new prototypes constructions are made by using this method. Three dimensional printing is taken into account as technology which can be used to print constructions in automated way on the Moon or Mars. The raw materials, which can be used with three dimensional printing have to fulfil basic requirements for those which are used in construction. That means that components of printing mortars are made from ingredients easily accessible in area nearby construction site and can be reusable. The cost of printing building objects due to that requirements is comparable to costs of traditional building, which are currently available. However additive techniques of printing needs a dedicated mortars for printer supplying. Characteristic for such mortars is: setting time, compressive strength, followability in the printing system, shape stability of every printed layer, controlling the hydration rate to ensure bonding with the subsequent layer, reusable capabilities, easily accessible raw materials, cost of such mixtures shouldn’t be too high in order to keep 3D printing competitive for traditional ways of building, mortar components should be recyclable and printing process should not influence negatively on an environment and people. All properties of printing mortars are determined by the device for additive application method. In this paper review of available materials used for three dimensional printing technology at construction site is presented. Presented materials were analysed in terms of requirements for building materials technology. Due to the lack of detailed information’s in available literature, regarding to the properties of raw materials, the results of this analysis may be used in the designing of new concrete mixtures for the use in three-dimensional printing technology for construction.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 655 ◽  
Author(s):  
Seong-Woo Hong ◽  
Ji-Young Yoon ◽  
Seong-Hwan Kim ◽  
Sun-Kon Lee ◽  
Yong-Rae Kim ◽  
...  

In this study, a soft structure with its stiffness tunable by an external field is proposed. The proposed soft beam structure consists of a skin structure with channels filled with a magnetorheological fluid (MRF). Two specimens of the soft structure are fabricated by three-dimensional printing and fused deposition modeling. In the fabrication, a nozzle is used to obtain channels in the skin of the thermoplastic polyurethane, while another nozzle is used to fill MRF in the channels. The specimens are tested by using a universal tensile machine to evaluate the relationships between the load and deflection under two different conditions, without and with permanent magnets. It is empirically shown that the stiffness of the proposed soft structure can be altered by activating the magnetic field.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Shin Liao ◽  
Ming-Jenn Wu ◽  
Chi-Yo Huang ◽  
Yu-Sheng Kao ◽  
Teng-Hsiang Lee

During the past years, the three-dimensional printing (3DP) has become a dominant rapid prototyping (RP) technology due to its very viable process in terms of cost, speed, and sales of related equipment. Nowadays, numerous 3DP based RP services are available. Because of the capability, service quality, and pricing of the services varies, how to select a suitable 3DP based RP service provider is very critical to the companies being engaged in new product developments. However, the issue was seldom studied. To resolve this problem, a hybrid multiple-criteria decision making (HMCDM) framework for evaluating and enhancing an appropriate 3DP based RP service provider based on the Decision Making Trial and Evaluation Laboratory (DEMATEL) based Network Process (DNP) as well as VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje) was proposed. The analytic framework was verified as feasible by an empirical study based on the opinions being provided by 3DP and RP experts. The well-verified framework can serve as the basis of future evaluation, selection, and enhancement of 3DP based RP service providers.


2020 ◽  
Vol 64 (2) ◽  
pp. 231-234 ◽  
Author(s):  
Heechul Kim ◽  
Doyun Lee ◽  
Soo Young Lee ◽  
Hongso Yang ◽  
Sang-Won Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document