scholarly journals Existence of multiple nontrivial solutions of the nonlinear Schrödinger-Korteweg-de Vries type system

2021 ◽  
Vol 11 (1) ◽  
pp. 636-654
Author(s):  
Qiuping Geng ◽  
Jun Wang ◽  
Jing Yang

Abstract In this paper we are concerned with the existence, nonexistence and bifurcation of nontrivial solution of the nonlinear Schrödinger-Korteweg-de Vries type system(NLS-NLS-KdV). First, we find some conditions to guarantee the existence and nonexistence of positive solution of the system. Second, we study the asymptotic behavior of the positive ground state solution. Finally, we use the classical Crandall-Rabinowitz local bifurcation theory to get the nontrivial positive solution. To get these results we encounter some new challenges. By combining the Nehari manifolds constraint method and the delicate energy estimates, we overcome the difficulties and find the two bifurcation branches from one semitrivial solution. This is an new interesting phenomenon but which have not previously been found.

2021 ◽  
Vol 10 (1) ◽  
pp. 1039-1060
Author(s):  
Qihan He ◽  
Juntao Lv ◽  
Zongyan Lv

Abstract We consider the following p-harmonic problem Δ ( | Δ u | p − 2 Δ u ) + m | u | p − 2 u = f ( x , u ) , x ∈ R N , u ∈ W 2 , p ( R N ) , $$\begin{array}{} \displaystyle \left\{ \displaystyle\begin{array}{ll} \displaystyle {\it\Delta} (|{\it\Delta} u|^{p-2}{\it\Delta} u)+m|u|^{p-2}u=f(x,u), \ \ x\in {\mathbb R}^N, \\ u \in W^{2,p}({\mathbb R}^N), \end{array} \right. \end{array}$$ where m > 0 is a constant, N > 2p ≥ 4 and lim t → ∞ f ( x , t ) | t | p − 2 t = l $\begin{array}{} \displaystyle \lim\limits_{t\rightarrow \infty}\frac{f(x,t)}{|t|^{p-2}t}=l \end{array}$ uniformly in x, which implies that f(x, t) does not satisfy the Ambrosetti-Rabinowitz type condition. By showing the Pohozaev identity for weak solutions to the limited problem of the above p-harmonic equation and using a variant version of Mountain Pass Theorem, we prove the existence and nonexistence of nontrivial solutions to the above equation. Moreover, if f(x, u) ≡ f(u), the existence of a ground state solution and the nonexistence of nontrivial solutions to the above problem is also proved by using artificial constraint method and the Pohozaev identity.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hongsen Fan ◽  
Zhiying Deng

AbstractIn this paper, we discuss a class of Kirchhof-type elliptic boundary value problem with Sobolev–Hardy critical exponent and apply the variational method to obtain one positive solution and two nontrivial solutions to the problem under certain conditions.


2019 ◽  
Vol 22 (06) ◽  
pp. 1950045 ◽  
Author(s):  
Rémi Carles ◽  
Clément Gallo

We justify the WKB analysis for generalized nonlinear Schrödinger equations (NLS), including the hyperbolic NLS and the Davey–Stewartson II system. Since the leading order system in this analysis is not hyperbolic, we work with analytic regularity, with a radius of analyticity decaying with time, in order to obtain better energy estimates. This provides qualitative information regarding equations for which global well-posedness in Sobolev spaces is widely open.


2021 ◽  
pp. 2150339
Author(s):  
Lanre Akinyemi ◽  
Pundikala Veeresha ◽  
Samuel Oluwatosin Ajibola

The primary goal of this paper is to seek solutions to the coupled nonlinear partial differential equations (CNPDEs) by the use of q-homotopy analysis transform method (q-HATM). The CNPDEs considered are the coupled nonlinear Schrödinger–Korteweg–de Vries (CNLS-KdV) and the coupled nonlinear Maccari (CNLM) systems. As a basis for explaining the interactive wave propagation of electromagnetic waves in plasma physics, Langmuir waves and dust-acoustic waves, the CNLS-KdV model has emerged as a model for defining various types of wave phenomena in mathematical physics, and so forth. The CNLM model is a nonlinear system that explains the dynamics of isolated waves, restricted in a small part of space, in several fields like nonlinear optics, hydrodynamic and plasma physics. We construct the solutions (bright soliton) of these models through q-HATM and present the numerical simulation in form of plots and tables. The solutions obtained by the suggested approach are provided in a refined converging series. The outcomes confirm that the proposed solutions procedure is highly methodological, accurate and easy to study CNPDEs.


2008 ◽  
Vol 2008 ◽  
pp. 1-14 ◽  
Author(s):  
Juan Belmonte-Beitia

We give a proof of the existence of stationary bright soliton solutions of the cubic-quintic nonlinear Schrödinger equation with inhomogeneous nonlinearity. By using bifurcation theory, we prove that the norm of the positive solution goes to zero as the parameterλ, called chemical potential in the Bose-Einstein condensates' literature, tends to zero. Moreover, we solve the time-dependent cubic-quintic nonlinear Schrödinger equation with inhomogeneous nonlinearities by using a numerical method.


2015 ◽  
Vol 81 (1-2) ◽  
pp. 739-751 ◽  
Author(s):  
Gao-Qing Meng ◽  
Jin-Lei Qin ◽  
Guo-Liang Yu

Author(s):  
G. Li ◽  
H.-S. Zhou

We consider the following elliptic equation: where m > 0, f(x, u)/u tends to a positive constant as u → + ∞. Here, the nonlinear term f(x, u) does not satisfy the usual condition, that is, for some θ > 0, which is important in using the mountain pass theorem. The aim of this paper is to discuss how to use the mountain pass theorem to show the existence of a positive solution to the present problem when we lose the above condition. Furthermore, if f(x, u) ≡ f(u), we also prove that the above problem has a ground state by using the artificial constraint method.


Author(s):  
B. B. V. Maia ◽  
O. H. Miyagaki

In this paper, we investigate the existence and nonexistence of results for a class of Hamiltonian-Choquard-type elliptic systems. We show the nonexistence of classical nontrivial solutions for the problem \[ \begin{cases} -\Delta u + u= ( I_{\alpha} \ast |v|^{p} )v^{p-1} \text{ in } \mathbb{R}^{N},\\ -\Delta v + v= ( I_{\beta} \ast |u|^{q} )u^{q-1} \text{ in } \mathbb{R}^{N}, \\ u(x),v(x) \rightarrow 0 \text{ when } |x|\rightarrow \infty, \end{cases} \] when $(N+\alpha )/p + (N+\beta )/q \leq 2(N-2)$ (if $N\geq 3$ ) and $(N+\alpha )/p + (N+\beta )/q \geq 2N$ (if $N=2$ ), where $I_{\alpha }$ and $I_{\beta }$ denote the Riesz potential. Second, via variational methods and the generalized Nehari manifold, we show the existence of a nontrivial non-negative solution or a Nehari-type ground state solution for the problem \[ \begin{cases} -\Delta u + u= (I_{\alpha} \ast |v|^{\frac{\alpha}{2}+1})|v|^{\frac{\alpha}{2}-1}v + g(v) \hbox{ in } \mathbb{R}^{2},\\ - \Delta v + v= (I_{\beta} \ast |u|^{\frac{\beta}{2}+1})|u|^{\frac{\beta}{2}-1}u + f(u), \hbox{ in } \mathbb{R}^{2},\\ u,v \in H^{1}(\mathbb{R}^{2}), \end{cases} \] where $\alpha ,\,\beta \in (0,\,2)$ and $f,\,g$ have exponential critical growth in the Trudinger–Moser sense.


Sign in / Sign up

Export Citation Format

Share Document