scholarly journals Nontrivial solutions to the p-harmonic equation with nonlinearity asymptotic to |t| p–2 t at infinity

2021 ◽  
Vol 10 (1) ◽  
pp. 1039-1060
Author(s):  
Qihan He ◽  
Juntao Lv ◽  
Zongyan Lv

Abstract We consider the following p-harmonic problem Δ ( | Δ u | p − 2 Δ u ) + m | u | p − 2 u = f ( x , u ) , x ∈ R N , u ∈ W 2 , p ( R N ) , $$\begin{array}{} \displaystyle \left\{ \displaystyle\begin{array}{ll} \displaystyle {\it\Delta} (|{\it\Delta} u|^{p-2}{\it\Delta} u)+m|u|^{p-2}u=f(x,u), \ \ x\in {\mathbb R}^N, \\ u \in W^{2,p}({\mathbb R}^N), \end{array} \right. \end{array}$$ where m > 0 is a constant, N > 2p ≥ 4 and lim t → ∞ f ( x , t ) | t | p − 2 t = l $\begin{array}{} \displaystyle \lim\limits_{t\rightarrow \infty}\frac{f(x,t)}{|t|^{p-2}t}=l \end{array}$ uniformly in x, which implies that f(x, t) does not satisfy the Ambrosetti-Rabinowitz type condition. By showing the Pohozaev identity for weak solutions to the limited problem of the above p-harmonic equation and using a variant version of Mountain Pass Theorem, we prove the existence and nonexistence of nontrivial solutions to the above equation. Moreover, if f(x, u) ≡ f(u), the existence of a ground state solution and the nonexistence of nontrivial solutions to the above problem is also proved by using artificial constraint method and the Pohozaev identity.

2019 ◽  
Vol 22 (04) ◽  
pp. 1950023 ◽  
Author(s):  
Xinfu Li ◽  
Shiwang Ma

In this paper, we study the Brezis–Nirenberg type problem for Choquard equations in [Formula: see text] [Formula: see text] where [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] or [Formula: see text] are the critical exponents in the sense of Hardy–Littlewood–Sobolev inequality and [Formula: see text] is the Riesz potential. Based on the results of the subcritical problems, and by using the subcritical approximation and the Pohožaev constraint method, we obtain a positive and radially nonincreasing ground-state solution in [Formula: see text] for the problem. To the end, the regularity and the Pohožaev identity of solutions to a general Choquard equation are obtained.


Author(s):  
B. B. V. Maia ◽  
O. H. Miyagaki

In this paper, we investigate the existence and nonexistence of results for a class of Hamiltonian-Choquard-type elliptic systems. We show the nonexistence of classical nontrivial solutions for the problem \[ \begin{cases} -\Delta u + u= ( I_{\alpha} \ast |v|^{p} )v^{p-1} \text{ in } \mathbb{R}^{N},\\ -\Delta v + v= ( I_{\beta} \ast |u|^{q} )u^{q-1} \text{ in } \mathbb{R}^{N}, \\ u(x),v(x) \rightarrow 0 \text{ when } |x|\rightarrow \infty, \end{cases} \] when $(N+\alpha )/p + (N+\beta )/q \leq 2(N-2)$ (if $N\geq 3$ ) and $(N+\alpha )/p + (N+\beta )/q \geq 2N$ (if $N=2$ ), where $I_{\alpha }$ and $I_{\beta }$ denote the Riesz potential. Second, via variational methods and the generalized Nehari manifold, we show the existence of a nontrivial non-negative solution or a Nehari-type ground state solution for the problem \[ \begin{cases} -\Delta u + u= (I_{\alpha} \ast |v|^{\frac{\alpha}{2}+1})|v|^{\frac{\alpha}{2}-1}v + g(v) \hbox{ in } \mathbb{R}^{2},\\ - \Delta v + v= (I_{\beta} \ast |u|^{\frac{\beta}{2}+1})|u|^{\frac{\beta}{2}-1}u + f(u), \hbox{ in } \mathbb{R}^{2},\\ u,v \in H^{1}(\mathbb{R}^{2}), \end{cases} \] where $\alpha ,\,\beta \in (0,\,2)$ and $f,\,g$ have exponential critical growth in the Trudinger–Moser sense.


Author(s):  
Manassés de Souza ◽  
Uberlandio B. Severo ◽  
Thiago Luiz do Rêgo

In this paper, we prove the existence of at least three nontrivial solutions for the following class of fractional Kirchhoff-type problems: [Formula: see text] where [Formula: see text] is a constant, [Formula: see text] is a bounded open interval, [Formula: see text] is a continuous potential, the nonlinear term [Formula: see text] has exponential growth of Trudinger–Moser type, [Formula: see text] and [Formula: see text] denotes the standard Gagliardo seminorm of the fractional Sobolev space [Formula: see text]. More precisely, by exploring a minimization argument and the quantitative deformation lemma, we establish the existence of a nodal (or sign-changing) solution and by means of the Mountain Pass Theorem, we get one nonpositive and one nonnegative ground state solution. Moreover, we show that the energy of the nodal solution is strictly larger than twice the ground state level. When we regard [Formula: see text] as a positive parameter, we study the behavior of the nodal solutions as [Formula: see text].


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang ◽  
Qiongfen Zhang

AbstractIn this paper, we focus on the existence of solutions for the Choquard equation $$\begin{aligned} \textstyle\begin{cases} {-}\Delta {u}+V(x)u=(I_{\alpha }* \vert u \vert ^{\frac{\alpha }{N}+1}) \vert u \vert ^{ \frac{\alpha }{N}-1}u+\lambda \vert u \vert ^{p-2}u,\quad x\in \mathbb{R}^{N}; \\ u\in H^{1}(\mathbb{R}^{N}), \end{cases}\displaystyle \end{aligned}$$ { − Δ u + V ( x ) u = ( I α ∗ | u | α N + 1 ) | u | α N − 1 u + λ | u | p − 2 u , x ∈ R N ; u ∈ H 1 ( R N ) , where $\lambda >0$ λ > 0 is a parameter, $\alpha \in (0,N)$ α ∈ ( 0 , N ) , $N\ge 3$ N ≥ 3 , $I_{\alpha }: \mathbb{R}^{N}\to \mathbb{R}$ I α : R N → R is the Riesz potential. As usual, $\alpha /N+1$ α / N + 1 is the lower critical exponent in the Hardy–Littlewood–Sobolev inequality. Under some weak assumptions, by using minimax methods and Pohožaev identity, we prove that this problem admits a ground state solution if $\lambda >\lambda _{*}$ λ > λ ∗ for some given number $\lambda _{*}$ λ ∗ in three cases: (i) $2< p<\frac{4}{N}+2$ 2 < p < 4 N + 2 , (ii) $p=\frac{4}{N}+2$ p = 4 N + 2 , and (iii) $\frac{4}{N}+2< p<2^{*}$ 4 N + 2 < p < 2 ∗ . Our result improves the previous related ones in the literature.


2014 ◽  
Vol 14 (2) ◽  
Author(s):  
X. H. Tang

AbstractConsider the semilinear Schrödinger equationwhere f is a superlinear, subcritical nonlinearity. We mainly study the case where both V and f are periodic in x and 0 belongs to a spectral gap of −Δ + V. Based on the work of Szulkin and Weth [J Funct Anal 257: 3802-3822, 2009], we develop a new technique to show the boundedness of Cerami sequences and derive a new super-quadratic condition that there exists a θfor the existence a “ground state solution” which minimizes the corresponding energy among all nontrivial solutions. Our result unifies and improves some known ones and the recent ones of Szulkin and Weth [J Funct Anal 257: 3802-3822, 2009] and Liu [Calc. Var. 45: 1-9, 2012].


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yong-Yong Li ◽  
Gui-Dong Li ◽  
Chun-Lei Tang

AbstractIn this paper, we investigate the non-autonomous Choquard equation-\Delta u+\lambda V(x)u=(I_{\alpha}\ast F(u))F^{\prime}(u)\quad\text{in}\ \mathbb{R}^{N},where N\geq 4, \lambda>0, V\in C(\mathbb{R}^{N},\mathbb{R}) is bounded from below and has a potential well, I_{\alpha} is the Riesz potential of order \alpha\in(0,N) and F(u)=\frac{1}{2_{\alpha}^{*}}\lvert u\rvert^{2_{\alpha}^{*}}+\frac{1}{2_{*}^{\alpha}}\lvert u\rvert^{2_{*}^{\alpha}}, in which 2_{\alpha}^{*}=\frac{N+\alpha}{N-2} and 2_{*}^{\alpha}=\frac{N+\alpha}{N} are upper and lower critical exponents due to the Hardy–Littlewood–Sobolev inequality, respectively. Based on the variational methods, by combining the mountain pass theorem and Nehari manifold, we obtain the existence and concentration of positive ground state solutions for 𝜆 large enough if 𝑉 is nonnegative in \mathbb{R}^{N}; further, by the linking theorem, we prove the existence of nontrivial solutions for 𝜆 large enough if 𝑉 changes sign in \mathbb{R}^{N}.


Author(s):  
Xilin Dou ◽  
xiaoming he

This paper deals with a class of fractional Schr\”{o}dinger-Poisson system \[\begin{cases}\displaystyle (-\Delta )^{s}u+V(x)u-K(x)\phi |u|^{2^*_s-3}u=a (x)f(u), &x \in \R^{3}\\ (-\Delta )^{s}\phi=K(x)|u|^{2^*_s-1}, &x \in \R^{3}\end{cases} \]with a critical nonlocal term and multiple competing potentials, which may decay and vanish at infinity, where $s \in (\frac{3}{4},1)$, $ 2^*_s = \frac{6}{3-2s}$ is the fractional critical exponent. The problem is set on the whole space and compactness issues have to be tackled. By employing the mountain pass theorem, concentration-compactness principle and approximation method, the existence of a positive ground state solution is obtained under appropriate assumptions imposed on $V, K, a$ and $f$.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Debajyoti Choudhuri ◽  
Dušan D. Repovš

AbstractIn this paper we establish the existence and multiplicity of nontrivial solutions to the following problem: $$\begin{aligned} \begin{aligned} (-\Delta )^{\frac{1}{2}}u+u+\bigl(\ln \vert \cdot \vert * \vert u \vert ^{2}\bigr)&=f(u)+\mu \vert u \vert ^{- \gamma -1}u,\quad \text{in }\mathbb{R}, \end{aligned} \end{aligned}$$ ( − Δ ) 1 2 u + u + ( ln | ⋅ | ∗ | u | 2 ) = f ( u ) + μ | u | − γ − 1 u , in  R , where $\mu >0$ μ > 0 , $(*)$ ( ∗ ) is the convolution operation between two functions, $0<\gamma <1$ 0 < γ < 1 , f is a function with a certain type of growth. We prove the existence of a nontrivial solution at a certain mountain pass level and another ground state solution when the nonlinearity f is of exponential critical growth.


2021 ◽  
Vol 11 (1) ◽  
pp. 636-654
Author(s):  
Qiuping Geng ◽  
Jun Wang ◽  
Jing Yang

Abstract In this paper we are concerned with the existence, nonexistence and bifurcation of nontrivial solution of the nonlinear Schrödinger-Korteweg-de Vries type system(NLS-NLS-KdV). First, we find some conditions to guarantee the existence and nonexistence of positive solution of the system. Second, we study the asymptotic behavior of the positive ground state solution. Finally, we use the classical Crandall-Rabinowitz local bifurcation theory to get the nontrivial positive solution. To get these results we encounter some new challenges. By combining the Nehari manifolds constraint method and the delicate energy estimates, we overcome the difficulties and find the two bifurcation branches from one semitrivial solution. This is an new interesting phenomenon but which have not previously been found.


2021 ◽  
Vol 19 (1) ◽  
pp. 297-305
Author(s):  
Yuting Zhu ◽  
Chunfang Chen ◽  
Jianhua Chen ◽  
Chenggui Yuan

Abstract In this paper, we study the following generalized Kadomtsev-Petviashvili equation u t + u x x x + ( h ( u ) ) x = D x − 1 Δ y u , {u}_{t}+{u}_{xxx}+{\left(h\left(u))}_{x}={D}_{x}^{-1}{\Delta }_{y}u, where ( t , x , y ) ∈ R + × R × R N − 1 \left(t,x,y)\in {{\mathbb{R}}}^{+}\times {\mathbb{R}}\times {{\mathbb{R}}}^{N-1} , N ≥ 2 N\ge 2 , D x − 1 f ( x , y ) = ∫ − ∞ x f ( s , y ) d s {D}_{x}^{-1}f\left(x,y)={\int }_{-\infty }^{x}f\left(s,y){\rm{d}}s , f t = ∂ f ∂ t {f}_{t}=\frac{\partial f}{\partial t} , f x = ∂ f ∂ x {f}_{x}=\frac{\partial f}{\partial x} and Δ y = ∑ i = 1 N − 1 ∂ 2 ∂ y i 2 {\Delta }_{y}={\sum }_{i=1}^{N-1}\frac{{\partial }^{2}}{{\partial }_{{y}_{i}}^{2}} . We get the existence of infinitely many nontrivial solutions under certain assumptions in bounded domain without Ambrosetti-Rabinowitz condition. Moreover, by using the method developed by Jeanjean [13], we establish the existence of ground state solutions in R N {{\mathbb{R}}}^{N} .


Sign in / Sign up

Export Citation Format

Share Document