Children, Donkeys and Eponyms at Dūr-Katlimmu

2021 ◽  
Vol 48 (2) ◽  
pp. 268-317
Author(s):  
Werner Nahm
Keyword(s):  

Abstract The Middle Assyrian herding texts from Dūr-Katlimmu are brought into a temporal order by following the animals from year to year, with new insights into the management of the herds. The use of percentages is confirmed. Three new joins of published texts are found. Based on the lists of serfs and rations the prosopography and ethnography of the šiluḫlu community is refined. Taken together, this leads to substantial corrections of the eponym sequence under Salmānu-ašarēd (Shalmaneser) I and Tukultī-Ninurta I. The texts show the impact of an epizootic and of three wars, in particular ups and downs in the war against Babylonia. The destruction of the šiluḫlu community under Tukultī-Ninurta I is described and an interpretation for it proposed.

2021 ◽  
pp. 1-15
Author(s):  
Nicole Baum ◽  
Jasleen Chaddha

Although noise has often been characterized as a distractor, contemporary studies have emphasized how some individuals’ cognitive performance could benefit from task-irrelevant noise. Usually these studies focus on sub-attentive individuals and/or those who have been diagnosed with ADHD. An example of task-irrelevant noise is white noise (WN). Research regarding the effectiveness of WN in healthy adults has provided mixed results and therefore, the implications of WN remain unknown. The objective of this study was to determine the effects of WN on the cognitive performance of the neurotypical population. To test this, participants were asked to complete simultaneous amplitude discrimination and temporal order judgement (TOJ) tests several times in the presence of varying levels of WN. Participants were split into two groups––one containing individuals with regular prior WN exposure and the other with no previous experience with WN. The performances of participants with prior exposure to WN, but not those without prior exposure, resembled a U-shaped tuning curve for simultaneous amplitude discrimination. This indicates that familiarity with WN moderates its effectiveness on cognitive improvement. TOJ was not found to be affected by varying levels of WN intensity. The results of this study emphasized that there is a possibility that WN could facilitate higher levels of cognitive performance, though there is likely an adjustment period associated with its introduction to daily life. This warrants that additional research should be conducted in order to cultivate a definitive conclusion about the effects of WN.


2018 ◽  
Vol 31 (5) ◽  
pp. 373-389 ◽  
Author(s):  
Simon P. Landry ◽  
François Champoux

Long-term musical training is an enriched multisensory training environment that can alter uni- and multisensory substrates and abilities. Amongst these altered abilities are faster reaction times for simple and complex sensory tasks. The crossed arm temporal-order judgement (TOJ) task is a complex tactile task in which TOJ error rate increases when arms are crossed. Reaction times (RTs) for this task are typically proportionate to the difficulty of the stimulus onset asynchrony (SOA) and increase more when the arms are crossed than when uncrossed. The objective of this study was to study the impact of musical training on RTs and accuracy for the crossed arm TOJ task. Seventeen musicians and 20 controls were tested. Musicians had significantly faster RTs for all crossed arm conditions and half of the uncrossed conditions. However, musicians had significantly more TOJ errors for the crossed posture. We speculate that faster musician TOJ RTs leave little time to consolidate conflicting internal and external task-related information when crossing the arms, leading to increased incorrect responses. These results provide novel insights on the potential mechanisms underlying the increased TOJ error rates when arms are crossed. Moreover, they add to the growing literature of altered sensory ability in musicians and propose an unexpected consequence of faster reaction times.


Author(s):  
Anja Franziska Ernst ◽  
Rink Hoekstra ◽  
Eric-Jan Wagenmakers ◽  
Andrew Gelman ◽  
Don van Ravenzwaaij

Abstract. As a research field expands, scientists have to update their knowledge and integrate the outcomes of a sequence of studies. However, such integrative judgments are generally known to fall victim to a primacy bias where people anchor their judgments on the initial information. In this preregistered study we tested the hypothesis that people anchor on the outcome of a small initial study, reducing the impact of a larger subsequent study that contradicts the initial result. Contrary to our expectation, undergraduates and academics displayed a recency bias, anchoring their judgment on the research outcome presented last. This recency bias is due to the fact that unsuccessful replications decreased trust in an effect more than did unsuccessful initial experiments. We recommend the time-reversal heuristic to account for temporal order effects during integration of research results.


2021 ◽  
Author(s):  
Hamid Teimouri ◽  
Anatoly B. Kolomeisky

AbstractCancer is a set of genetic diseases that are driven by mutations. It was recently discovered that the temporal order of genetic mutations affects the cancer evolution and even the nature of the decease itself. The mechanistic origin of these observations, however, remain not well understood. Here we present a theoretical model for cancer initiation dynamics that allows us to quantify the impact of the temporal order of mutations. In our approach, the cancer initiation process is viewed as a set of stochastic transitions between discrete states defined by the different numbers of mutated cells. Using a first-passage analysis, probabilities and times before the cancer initiation are explicitly evaluated for two alternative sequences of two mutations. It is found that the probability of cancer initiation is determined only by the first mutation, while the dynamics is specified by both mutations. In addition, it is shown that the acquisition of a mutation with higher fitness before mutation with lower fitness increases the probability of the tumor formation but delays the cancer initiation. Theoretical results are explained using effective free-energy landscapes.


2014 ◽  
Vol 26 (9) ◽  
pp. 2070-2086 ◽  
Author(s):  
Sze Chai Kwok ◽  
Tim Shallice ◽  
Emiliano Macaluso

We investigated the interplay between stimulus-driven attention and memory retrieval with a novel interference paradigm that engaged both systems concurrently on each trial. Participants encoded a 45-min movie on Day 1 and, on Day 2, performed a temporal order judgment task during fMRI. Each retrieval trial comprised three images presented sequentially, and the task required participants to judge the temporal order of the first and the last images (“memory probes”) while ignoring the second image, which was task irrelevant (“attention distractor”). We manipulated the content relatedness and the temporal proximity between the distractor and the memory probes, as well as the temporal distance between two probes. Behaviorally, short temporal distances between the probes led to reduced retrieval performance. Distractors that at encoding were temporally close to the first probe image reduced these costs, specifically when the distractor was content unrelated to the memory probes. The imaging results associated the distractor probe temporal proximity with activation of the right ventral attention network. By contrast, the precuneus was activated for high-content relatedness between distractors and probes and in trials including a short distance between the two memory probes. The engagement of the right ventral attention network by specific types of distractors suggests a link between stimulus-driven attention control and episodic memory retrieval, whereas the activation pattern of the precuneus implicates this region in memory search within knowledge/content-based hierarchies.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


Sign in / Sign up

Export Citation Format

Share Document