scholarly journals Numeric estimation of resource requirements for a practical polarization-frame alignment scheme for quantum key distribution (QKD)

2020 ◽  
Vol 9 (5) ◽  
pp. 253-261
Author(s):  
Brendon L. Higgins ◽  
Jean-Philippe Bourgoin ◽  
Thomas Jennewein

AbstractOwing to physical orientations and birefringence effects, practical quantum information protocols utilizing optical polarization need to handle misalignment between preparation and measurement reference frames. For any such capable system, an important question is how many resources – for example, measured single photons – are needed to reliably achieve alignment precision sufficient for the desired quantum protocol. Here, we study the performance of a polarization-frame alignment scheme used in prior laboratory and field quantum key distribution (QKD) experiments by performing Monte Carlo numerical simulations. The scheme utilizes, to the extent possible, the same single-photon-level signals and measurements as for the QKD protocol being supported. Even with detector noise and imperfect sources, our analysis shows that only a small fraction of resources from the overall signal – a few hundred photon detections, in total – are required for good performance, restoring the state to better than 99% of its original quality.

Cryptography ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 24
Author(s):  
Noah Cowper ◽  
Harry Shaw ◽  
David Thayer

The ability to send information securely is a vital aspect of today’s society, and with the developments in quantum computing, new ways to communicate have to be researched. We explored a novel application of quantum key distribution (QKD) and synchronized chaos which was utilized to mask a transmitted message. This communication scheme is not hampered by the ability to send single photons and consequently is not vulnerable to number splitting attacks like other QKD schemes that rely on single photon emission. This was shown by an eavesdropper gaining a maximum amount of information on the key during the first setup and listening to the key reconciliation to gain more information. We proved that there is a maximum amount of information an eavesdropper can gain during the communication, and this is insufficient to decode the message.


Author(s):  
D. B. Horoshko ◽  
S. Ya. Kilin

We consider an unambiguous state discrimination attack on the B92 protocol of quantum key distribution, realized on the basis of polarization encoding of photons produced by a single-photon source. We calculate the secure key rate and the maximal tolerable loss for various overlaps between two signal states employed in this protocol. We make also a comparison with a physically impossible attack of perfect quantum cloning, and show that the unambiguous state discrimination is much more dangerous for the B92 protocol, than this attack, demonstrating thus, that the security of quantum key distribution is not always based on the no-cloning theorem.


Author(s):  
Sabine Euler ◽  
Erik Fitzke ◽  
Oleg Nikiforov ◽  
Daniel Hofmann ◽  
Till Dolejsky ◽  
...  

AbstractIn our laboratory, we employ two biphoton sources for quantum key distribution. The first is based on cw parametric down-conversion of photons at 404 nm in PPKTP waveguide chips, while the second is based on the pulsed parametric down-conversion of 775 nm photons in PPLN waveguides. The spectral characterization is important for the determination of certain side-channel attacks. A Hong-Ou-Mandel experiment employing the first photon source revealed a complex structure of the common Hong-Ou-Mandel dip. By measuring the spectra of the single photons at 808 nm, we were able to associate these structures to the superposition of different transverse modes of the pump photons in our waveguide chips. The pulsed source was characterized by means of single-photon spectra measured by a sensitive spectrum analyzer as well as dispersion-based measurements. Finally, we also describe Hong-Ou-Mandel experiments using the photons from the second source.


2019 ◽  
Vol 9 (22) ◽  
pp. 4956 ◽  
Author(s):  
Xinchao Ruan ◽  
Hang Zhang ◽  
Wei Zhao ◽  
Xiaoxue Wang ◽  
Xuan Li ◽  
...  

We investigate the optical absorption and scattering properties of four different kinds of seawater as the quantum channel. The models of discrete-modulated continuous-variable quantum key distribution (CV-QKD) in free-space seawater channel are briefly described, and the performance of the four-state protocol and the eight-state protocol in asymptotic and finite-size cases is analyzed in detail. Simulation results illustrate that the more complex is the seawater composition, the worse is the performance of the protocol. For different types of seawater channels, we can improve the performance of the protocol by selecting different optimal modulation variances and controlling the extra noise on the channel. Besides, we can find that the performance of the eight-state protocol is better than that of the four-state protocol, and there is little difference between homodyne detection and heterodyne detection. Although the secret key rate of the protocol that we propose is still relatively low and the maximum transmission distance is only a few hundred meters, the research on CV-QKD over the seawater channel is of great significance, which provides a new idea for the construction of global secure communication network.


2007 ◽  
Vol 1 (6) ◽  
pp. 343-348 ◽  
Author(s):  
Hiroki Takesue ◽  
Sae Woo Nam ◽  
Qiang Zhang ◽  
Robert H. Hadfield ◽  
Toshimori Honjo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document