scholarly journals The Dependence of Atmospheric Extinction on Meteorological Conditions and Aerosol Size Distribution

2001 ◽  
Vol 10 (4) ◽  
Author(s):  
Erika Pakštienė
2018 ◽  
Vol 18 (12) ◽  
pp. 8667-8688 ◽  
Author(s):  
Ayodeji Akingunola ◽  
Paul A. Makar ◽  
Junhua Zhang ◽  
Andrea Darlington ◽  
Shao-Meng Li ◽  
...  

Abstract. We evaluate four high-resolution model simulations of pollutant emissions, chemical transformation, and downwind transport for the Athabasca oil sands using the Global Environmental Multiscale – Modelling Air-quality and Chemistry (GEM-MACH) model, and compare model results with surface monitoring network and aircraft observations of multiple pollutants, for simulations spanning a time period corresponding to an aircraft measurement campaign in the summer of 2013. We have focussed here on the impact of different representations of the model's aerosol size distribution and plume-rise parameterization on model results. The use of a more finely resolved representation of the aerosol size distribution was found to have a significant impact on model performance, reducing the magnitude of the original surface PM2.5 negative biases 32 %, from −2.62 to −1.72 µg m−3. We compared model predictions of SO2, NO2, and speciated particulate matter concentrations from simulations employing the commonly used Briggs (1984) plume-rise algorithms to redistribute emissions from large stacks, with stack plume observations. As in our companion paper (Gordon et al., 2017), we found that Briggs algorithms based on estimates of atmospheric stability at the stack height resulted in under-predictions of plume rise, with 116 out of 176 test cases falling below the model : observation 1 : 2 line, 59 cases falling within a factor of 2 of the observed plume heights, and an average model plume height of 289 m compared to an average observed plume height of 822 m. We used a high-resolution meteorological model to confirm the presence of significant horizontal heterogeneity in the local meteorological conditions driving plume rise. Using these simulated meteorological conditions at the stack locations, we found that a layered buoyancy approach for estimating plume rise in stable to neutral atmospheres, coupled with the assumption of free rise in convectively unstable atmospheres, resulted in much better model performance relative to observations (124 out of 176 cases falling within a factor of 2 of the observed plume height, with 69 of these cases above and 55 of these cases below the 1 : 1 line and within a factor of 2 of observed values). This is in contrast to our companion paper, wherein this layered approach (driven by meteorological observations not co-located with the stacks) showed a relatively modest impact on predicted plume heights. Persistent issues with over-fumigation of plumes in the model were linked to a more rapid decrease in simulated temperature with increasing height than was observed. This in turn may have led to overestimates of near-surface diffusivity, resulting in excessive fumigation.


2016 ◽  
Vol 16 (14) ◽  
pp. 9435-9455 ◽  
Author(s):  
Matthew J. Alvarado ◽  
Chantelle R. Lonsdale ◽  
Helen L. Macintyre ◽  
Huisheng Bian ◽  
Mian Chin ◽  
...  

Abstract. Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10–23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction throughout the aerosol size distribution. Using a core-shell mixing rule in ASP overestimates aerosol absorption, especially for the fresh biomass burning aerosol measured in ARCTAS-B, suggesting the need for modeling the time-varying mixing states of aerosols in future versions of ASP.


2021 ◽  
Vol 775 ◽  
pp. 145690
Author(s):  
Marie-Ève Benoit ◽  
Michèle Prévost ◽  
Antonella Succar ◽  
Dominique Charron ◽  
Eric Déziel ◽  
...  

2018 ◽  
Author(s):  
Anna Nikandrova ◽  
Ksenia Tabakova ◽  
Antti Manninen ◽  
Riikka Väänänen ◽  
Tuukka Petäjä ◽  
...  

Abstract. Understanding the distribution of aerosol layers is important for determining long range transport and aerosol radiative forcing. In this study we combine airborne in situ measurements of aerosol with data obtained by a ground-based High Spectral Resolution Lidar (HSRL) and radiosonde profiles to investigate the temporal and vertical variability of aerosol properties in the lower troposphere. The HSRL was deployed in Hyytiälä, Southern Finland, from January to September 2014 as a part of the US DoE ARM (Atmospheric Radiation Measurement) mobile facility during the BAECC (Biogenic Aerosols – Effects on Cloud and Climate) Campaign. Two flight campaigns took place in April and August 2014 with instruments measuring the aerosol size distribution from 10 nm to 10 µm at altitudes up to 3800 m. Two case studies from the flight campaigns, when several aerosol layers were identified, were selected for further investigation: one clear sky case, and one partly cloudy case. During the clear sky case, turbulent mixing ensured low temporal and spatial variability in the measured aerosol size distribution in the boundary layer whereas mixing was not as homogeneous in the boundary layer during the partly cloudy case. The elevated layers exhibited greater temporal and spatial variability in aerosol size distribution, indicating a lack of mixing. New particle formation was observed in the boundary layer during the clear sky case, and nucleation mode particles were also seen in the elevated layers that were not mixing with the boundary layer. Interpreting local measurements of elevated layers in terms of long-range transport can be achieved using back trajectories from Lagrangian models, but care should be taken in selecting appropriate arrival heights, since the modelled and observed layer heights did not always coincide. We conclude that higher confidence in attributing elevated aerosol layers with their air mass origin is attained when back trajectories are combined with lidar and radiosonde profiles.


2005 ◽  
Vol 5 (8) ◽  
pp. 2227-2252 ◽  
Author(s):  
D. V. Spracklen ◽  
K. J. Pringle ◽  
K. S. Carslaw ◽  
M. P. Chipperfield ◽  
G. W. Mann

Abstract. A GLObal Model of Aerosol Processes (GLOMAP) has been developed as an extension to the TOMCAT 3-D Eulerian off-line chemical transport model. GLOMAP simulates the evolution of the global aerosol size distribution using a sectional two-moment scheme and includes the processes of aerosol nucleation, condensation, growth, coagulation, wet and dry deposition and cloud processing. We describe the results of a global simulation of sulfuric acid and sea spray aerosol. The model captures features of the aerosol size distribution that are well established from observations in the marine boundary layer and free troposphere. Modelled condensation nuclei (CN>3nm) vary between about 250–500 cm-3 in remote marine boundary layer regions and are generally in good agreement with observations. Modelled continental CN concentrations are lower than observed, which may be due to lack of some primary aerosol sources or the neglect of nucleation mechanisms other than binary homogeneous nucleation of sulfuric acid-water particles. Remote marine CN concentrations increase to around 2000–10 000 cm


1976 ◽  
Vol 10 (8) ◽  
pp. 571-576 ◽  
Author(s):  
R.E. Van Grieken ◽  
T.B. Johansson ◽  
K.R. Akselsson ◽  
J.W. Winchester ◽  
J.W. Nelson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document