scholarly journals Mathematical Modelling of the Heald Shaft

2016 ◽  
Vol 16 (4) ◽  
pp. 175-181
Author(s):  
Martin Bílek ◽  
Šimon Kovář ◽  
Josef Skřivánek

Abstract The manufacturers of weaving equipment recently endeavour to minimise the necessary designing plays in the weaving loom mechanisms. One of the mechanisms most exposed to stress is the shedding motion that defines the held-shaft stroke. Its end part is the heald shaft. The heald shaft constitutes a problematic assembly of the shedding motion. The design employed presently is characterised by dynamic impact loading caused by designing play in the suspension of healds into the heald shaft. During weaving cycle, the healds fly between the main beams of the heald shaft, producing a considerable force pulse. This paper is concerned with the description of dynamic behaviour of the existing design on the basis of mathematical modelling and verification of obtained results by means of experimental analysis.

2011 ◽  
Vol 30 (6) ◽  
pp. 885-892 ◽  
Author(s):  
Timothy A. Burkhart ◽  
David M. Andrews ◽  
Cynthia E. Dunning

Author(s):  
M. A. Boogaard ◽  
A. L. Schwab ◽  
Z. Li

As vibration based condition monitoring requires a good understanding of the dynamic behaviour of the structure, a good model is needed. At the TU Delft a train borne monitoring system is being developed which currently focusses on crossings. Crossings are prone to very fast degradation due to impact loading. In this paper a finite element model of a free floating frog is presented and validated up to a 100 Hz using dynamic impact measurements. The mode shapes of the free floating frog are then also compared to some preliminary results from an in-situ test. This comparison shows that the in-situ frequencies can be up to twice the free floating frequency.


2003 ◽  
Vol 8 (5) ◽  
pp. 421-432 ◽  
Author(s):  
K Kormi ◽  
V N Wijayathunga ◽  
D C Webb ◽  
S T S Al-Hassani

2017 ◽  
Vol 26 (12) ◽  
pp. 5837-5846 ◽  
Author(s):  
G. M. Owolabi ◽  
D. T. Bolling ◽  
A. G. Odeshi ◽  
H. A. Whitworth ◽  
N. Yilmaz ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Shengli Yang ◽  
Hao Yue ◽  
Gaofeng Song ◽  
Junjie Wang ◽  
Yanyao Ma ◽  
...  

The dynamic hazards in the open face area caused by the impact load of the massive strong roof become increasingly severe with the increase in the cutting height of the longwall face and its depth of cover. Understanding the strata-shield interaction under the dynamic impact loading condition may relieve the dynamic hazards. In this paper, a 3D physical modelling platform is developed to study the interaction between the roof strata and the longwall shield under the dynamic impact load conditions. A steel plate is dropped to the coal face wall at a certain height above the immediate roof to simulate the free fall of the main roof and the dynamic impact loading environment. The occurrence of major roof falls is modelled at different height above the model and at different positions relative to the longwall faceline. The large-cutting-height and top-coal-caving mining methods are modelled in the study to include the nature of the immediate roof. The results show that the level of face and roof failures depends on the magnitude of the dynamic impact load. The position and height of the roof fall have an important influence to the stability of the roof and face. The pressures on the shield and the solid coal face are relieved for the top-coal-caving face as compared to the large-cutting-height face.


Sign in / Sign up

Export Citation Format

Share Document