Protein transport across the peroxisomal membrane

2009 ◽  
Vol 390 (8) ◽  
Author(s):  
Wolfgang Girzalsky ◽  
Harald W. Platta ◽  
Ralf Erdmann

AbstractThe maintenance of peroxisome function depends on the formation of the peroxisomal membrane and the subsequent import of both membrane and matrix proteins. Without exception, peroxisomal matrix proteins are nuclear encoded, synthesized on free ribosomes and subsequently imported post-translationally. In contrast to other translocation systems that transport unfolded polypeptide chains, the peroxisomal import apparatus can facilitate the transport of folded and oligomeric proteins across the peroxisomal membrane. The peroxisomal protein import is mediated by cycling receptors that shuttle between the cytosol and peroxisomal lumen and depends on ATP and ubiquitin. In this brief review, we will summarize our current knowledge on the import of soluble proteins into the peroxisomal matrix.

Open Biology ◽  
2015 ◽  
Vol 5 (4) ◽  
pp. 140236 ◽  
Author(s):  
Marta O. Freitas ◽  
Tânia Francisco ◽  
Tony A. Rodrigues ◽  
Celien Lismont ◽  
Pedro Domingues ◽  
...  

Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and transported by the shuttling receptor PEX5 to the peroxisomal membrane docking/translocation machinery, where they are translocated into the organelle matrix. Under certain experimental conditions this protein import machinery has the remarkable capacity to accept already oligomerized proteins, a property that has heavily influenced current models on the mechanism of peroxisomal protein import. However, whether or not oligomeric proteins are really the best and most frequent clients of this machinery remain unclear. In this work, we present three lines of evidence suggesting that the peroxisomal import machinery displays a preference for monomeric proteins. First, in agreement with previous findings on catalase, we show that PEX5 binds newly synthesized (monomeric) acyl-CoA oxidase 1 (ACOX1) and urate oxidase (UOX), potently inhibiting their oligomerization. Second, in vitro import experiments suggest that monomeric ACOX1 and UOX are better peroxisomal import substrates than the corresponding oligomeric forms. Finally, we provide data strongly suggesting that although ACOX1 lacking a peroxisomal targeting signal can be imported into peroxisomes when co-expressed with ACOX1 containing its targeting signal, this import pathway is inefficient.


1995 ◽  
Vol 108 (4) ◽  
pp. 1469-1476
Author(s):  
P.E. Hill ◽  
P.A. Walton

Peroxisomes import virtually all of their membrane and matrix proteins post-translationally. It is presently unknown whether, in mammalian cells, their exists a pool of mature peroxisomes which have received their complement of proteins and are import-incompetent. Previous work has shown that fibroblasts are capable of importing microinjected peroxisomal proteins into peroxisomes. This report describes the import of a hybrid peroxisomal protein into virtually all peroxisomes of the microinjected cell. The peroxisomal import was uniform in both short and long incubations. Pretreatment of the cells with cycloheximide did not affect the import of the peroxisomal protein, nor was there any difference in the distribution of the imported protein. Sequential microinjection experiments demonstrated that peroxisomes that had imported luciferase were capable of importing another peroxisomal protein injected 24 hours later. These results suggest that, in fibroblasts, all peroxisomes have associated protein-import machinery; this evidence does not support the hypothesis that there exists a pool of import-incompetent peroxisomes.


2009 ◽  
Vol 390 (8) ◽  
Author(s):  
Maik S. Sommer ◽  
Enrico Schleiff

Abstract Protein transport, especially into different cellular compartments, is a highly coordinated and regulated process. The molecular machineries which carry out these transport processes are highly complex in structure, function, and regulation. In the case of chloroplasts, thousands of protein molecules have been estimated to be transported across the double-membrane bound envelope per minute. In this brief review, we summarize current knowledge about the molecular interplay during precursor protein import into chloroplasts, focusing on the initial events at the outer envelope.


2021 ◽  
pp. mbc.E21-02-0074
Author(s):  
Barbara Knoblach ◽  
Ray Ishida ◽  
Tom C. Hobman ◽  
Richard A. Rachubinski

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that has triggered global health and economic crises. Here we report the effects of SARS-CoV-2 infection on peroxisomes of human cell lines, Huh-7 and SK-N-SH. Peroxisomes undergo dramatic changes in morphology in SARS-CoV-2-infected cells. Rearrangement of peroxisomal membranes is followed by redistribution of peroxisomal matrix proteins to the cytosol, resulting in a dramatic decrease in the numbers of mature peroxisomes. The SARS-CoV-2 ORF14 protein was shown to interact physically with human PEX14, a peroxisomal membrane protein required for matrix protein import and peroxisome biogenesis. Given the important roles of peroxisomes in innate immunity, SARS-CoV-2 may directly target peroxisomes, resulting in loss of peroxisome structural integrity, matrix protein content and ability to function in antiviral signaling. [Media: see text]


1995 ◽  
Vol 130 (1) ◽  
pp. 51-65 ◽  
Author(s):  
E A Wiemer ◽  
W M Nuttley ◽  
B L Bertolaet ◽  
X Li ◽  
U Francke ◽  
...  

Two peroxisomal targeting signals, PTS1 and PTS2, are involved in the import of proteins into the peroxisome matrix. Human patients with fatal generalized peroxisomal deficiency disorders fall into at least nine genetic complementation groups. Cells from many of these patients are deficient in the import of PTS1-containing proteins, but the causes of the protein-import defect in these patients are unknown. We have cloned and sequenced the human cDNA homologue (PTS1R) of the Pichia pastoris PAS8 gene, the PTS1 receptor (McCollum, D., E. Monosov, and S. Subramani. 1993. J. Cell Biol. 121:761-774). The PTS1R mRNA is expressed in all human tissues examined. Antibodies to the human PTS1R recognize this protein in human, monkey, rat, and hamster cells. The protein is localized mainly in the cytosol but is also found to be associated with peroxisomes. Part of the peroxisomal PTS1R protein is tightly bound to the peroxisomal membrane. Antibodies to PTS1R inhibit peroxisomal protein-import of PTS1-containing proteins in a permeabilized CHO cell system. In vitro-translated PTS1R protein specifically binds a serine-lysine-leucine-peptide. A PAS8-PTS1R fusion protein complements the P. pastoris pas8 mutant. The PTS1R cDNA also complements the PTS1 protein-import defect in skin fibroblasts from patients--belonging to complementation group two--diagnosed as having neonatal adrenoleukodystrophy or Zellweger syndrome. The PTS1R gene has been localized to a chromosomal location where no other peroxisomal disorder genes are known to map. Our findings represent the only case in which the molecular basis of the protein-import deficiency in human peroxisomal disorders is understood.


2008 ◽  
Vol 36 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Harald W. Platta ◽  
Mykhaylo O. Debelyy ◽  
Fouzi El Magraoui ◽  
Ralf Erdmann

The discovery of the peroxisomal ATPase Pex1p triggered the beginning of the research on AAA (ATPase associated with various cellular activities) proteins and the genetic dissection of peroxisome biogenesis. Peroxisomes are virtually ubiquitous organelles, which are connected to diverse cellular functions. The highly diverse and adaptive character of peroxisomes is accomplished by modulation of their enzyme content, which is mediated by dynamically operating protein-import machineries. The import of matrix proteins into the peroxisomal lumen has been described as the ATP-consuming step, but the corresponding reaction, as well as the ATPase responsible, had been obscure for nearly 15 years. Recent work using yeast and human fibroblast cells has identified the peroxisomal AAA proteins Pex1p and Pex6p as mechano-enzymes and core components of a complex which dislocates the cycling import receptor Pex5p from the peroxisomal membrane back to the cytosol. This AAA-mediated process is regulated by the ubiquitination status of the receptor. Pex4p [Ubc10p (ubiquitin-conjugating enzyme 10)]-catalysed mono-ubiquitination of Pex5p primes the receptor for recycling, thereby enabling further rounds of matrix protein import, whereas Ubc4p-catalysed polyubiquitination targets Pex5p to proteasomal degradation.


2017 ◽  
Vol 398 (5-6) ◽  
pp. 607-624 ◽  
Author(s):  
Daniel P. Schwerter ◽  
Immanuel Grimm ◽  
Harald W. Platta ◽  
Ralf Erdmann

Abstract In peroxisomal matrix protein import two processes directly depend on the binding and hydrolysis of ATP, both taking place at the late steps of the peroxisomal import cycle. First, ATP hydrolysis is required to initiate a ubiquitin-transfer cascade to modify the import (co-)receptors. These receptors display a dual localization in the cytosol and at the peroxisomal membrane, whereas only the membrane bound fraction receives the ubiquitin modification. The second ATP-dependent process of the import cycle is carried out by the two AAA+-proteins Pex1p and Pex6p. These ATPases form a heterohexameric complex, which is recruited to the peroxisomal import machinery by the membrane anchor protein Pex15p. The Pex1p/Pex6p complex recognizes the ubiquitinated import receptors, pulls them out of the membrane and releases them into the cytosol. There the deubiquitinated receptors are provided for further rounds of import. ATP binding and hydrolysis are required for Pex1p/Pex6p complex formation and receptor export. In this review, we summarize the current knowledge on the peroxisomal import cascade. In particular, we will focus on the ATP-dependent processes, which are so far best understood in the model organism Saccharomyces cerevisiae.


1998 ◽  
Vol 78 (1) ◽  
pp. 171-188 ◽  
Author(s):  
SURESH SUBRAMANI

Subramani, Suresh. Components Involved in Peroxisome Import, Biogenesis, Proliferation, Turnover, and Movement. Physiol. Rev. 78: 171–188, 1998. — In the decade that has elapsed since the discovery of the first peroxisomal targeting signal (PTS), considerable information has been obtained regarding the mechanism of protein import into peroxisomes. The PTSs responsible for the import of matrix and membrane proteins to peroxisomes, the receptors for several of these PTSs, and docking proteins for the PTS1 and PTS2 receptors are known. Many peroxins involved in peroxisomal protein import and biogenesis have been characterized genetically and biochemically. These studies have revealed important new insights regarding the mechanism of protein translocation across the peroxisomal membrane, the conservation of PEX genes through evolution, the role of peroxins in fatal human peroxisomal disorders, and the biogenesis of the organelle. It is clear that peroxisomal protein import and biogenesis have many features unique to this organelle alone. More recent studies on peroxisome degradation, division, and movement highlight newer aspects of the biology of this organelle that promise to be just as exciting and interesting as import and biogenesis.


2015 ◽  
Vol 211 (5) ◽  
pp. 955-962 ◽  
Author(s):  
Kèvin Knoops ◽  
Rinse de Boer ◽  
Anita Kram ◽  
Ida J. van der Klei

Pex1 and Pex6 are two AAA-ATPases that play a crucial role in peroxisome biogenesis. We have characterized the ultrastructure of the Saccharomyces cerevisiae peroxisome-deficient mutants pex1 and pex6 by various high-resolution electron microscopy techniques. We observed that the cells contained peroxisomal membrane remnants, which in ultrathin cross sections generally appeared as double membrane rings. Electron tomography revealed that these structures consisted of one continuous membrane, representing an empty, flattened vesicle, which folds into a cup shape. Immunocytochemistry revealed that these structures lack peroxisomal matrix proteins but are the sole sites of the major peroxisomal membrane proteins Pex2, Pex10, Pex11, Pex13, and Pex14. Upon reintroduction of Pex1 in Pex1-deficient cells, these peroxisomal membrane remnants (ghosts) rapidly incorporated peroxisomal matrix proteins and developed into peroxisomes. Our data support earlier views that Pex1 and Pex6 play a role in peroxisomal matrix protein import.


2000 ◽  
Vol 20 (20) ◽  
pp. 7516-7526 ◽  
Author(s):  
Cynthia S. Collins ◽  
Jennifer E. Kalish ◽  
James C. Morrell ◽  
J. Michael McCaffery ◽  
Stephen J. Gould

ABSTRACT Peroxisomes are independent organelles found in virtually all eukaryotic cells. Genetic studies have identified more than 20PEX genes that are required for peroxisome biogenesis. The role of most PEX gene products, peroxins, remains to be determined, but a variety of studies have established that Pex5p binds the type 1 peroxisomal targeting signal and is the import receptor for most newly synthesized peroxisomal matrix proteins. The steady-state abundance of Pex5p is unaffected in mostpex mutants of the yeast Pichia pastorisbut is severely reduced in pex4 andpex22 mutants and moderately reduced in pex1and pex6 mutants. We used these subphenotypes to determine the epistatic relationships among several groups ofpex mutants. Our results demonstrate that Pex4p acts after the peroxisome membrane synthesis factor Pex3p, the Pex5p docking factors Pex13p and Pex14p, the matrix protein import factors Pex8p, Pex10p, and Pex12p, and two other peroxins, Pex2p and Pex17p. Pex22p and the interacting AAA ATPases Pex1p and Pex6p were also found to act after Pex10p. Furthermore, Pex1p and Pex6p were found to act upstream of Pex4p and Pex22p. These results suggest that Pex1p, Pex4p, Pex6p, and Pex22p act late in peroxisomal matrix protein import, after matrix protein translocation. This hypothesis is supported by the phenotypes of the corresponding mutant strains. As has been shown previously for P. pastoris pex1,pex6, and pex22 mutant cells, we show here thatpex4Δ mutant cells contain peroxisomal membrane protein-containing peroxisomes that import residual amounts of peroxisomal matrix proteins.


Sign in / Sign up

Export Citation Format

Share Document