scholarly journals Regulation of the Dynamic Live Load Factor for Calculation of Bridge Structures on High-Speed Railway Mainlines

2017 ◽  
Vol 13 (1) ◽  
pp. 12-19 ◽  
Author(s):  
Leonid K. Dyachenko ◽  
Andrey V. Benin

AbstractWhen the high-speed railway traffic is being organized, it becomes necessary to elaborate bridge design standards for high-speed railways (HSR). Methodology of studying the issues of HSR bridge design is based on the comprehensive analysis of domestic research as well as international experience in design, construction and operation of high-speed railways. Serious requirements are imposed on the HSR artificial structures, which raise a number of scientific tasks associated mainly with the issues of the dynamic interaction of the rolling stock and the bridge elements. To ensure safety of traffic and reliability of bridges during the whole period of operation one needs to resolve the dynamic problems of various types of high-speed trains moving along the structures. The article analyses dependences of the magnitude of inertial response on the external stress parameters and proposes a simplified method of determination of the dynamic live load factor caused by the passage of high-speed trains. The usefulness of the given research arises from the reduction of complexity of the complicated dynamic calculations needed to describe a high-speed train travelling along the artificial structures.

2019 ◽  
Vol 944 ◽  
pp. 439-447 ◽  
Author(s):  
Guan Zhen Zhang ◽  
Rui Ming Ren ◽  
Hong Xiang Yin

In recent years, high speed railway technology has developed rapidly in China. Long routing of high-speed trains, low temperatures, corrosive environments and sand damage are unique to China’s operating environment. As an important safety component of rolling stock, the safety and reliability of the wheels is of deep concern and high value. It is significant to carefully study and systematically summarize the damage from different failure types in high-speed railway wheels under current conditions, and determine the influencing factors and mechanisms of wheel failures in order to improve railway operation safety. In this paper, the damage forms of high-speed railway wheels in China are introduced, and the main influencing factors of wheel failure are discussed in combination with wheel damage characteristics. What’s more, damage mechanism is analyzed aiming at providing theoretical references for reducing failure rate and improving train operation quality.


Author(s):  
Diana Khairallah ◽  
Olivier Chupin ◽  
Juliette Blanc ◽  
Pierre Hornych ◽  
Jean-Michel Piau ◽  
...  

The design and durability of high-speed railway lines is a major challenge in the field of railway transportation. In France, 40 years of feedback on the field behavior of ballasted tracks led to improvements in the design rules. However, the settlement and wear of ballast, caused by dynamic stresses at high frequencies, remains a major problem on high-speed tracks leading to high maintenance costs. Studies have shown that this settlement is linked to the high acceleration produced in the ballast layer by high-speed trains traveling on the track, disrupting the granular assembly. The “Bretagne–Pays de la Loire” high-speed line (BPL HSL), with its varied subgrade conditions, represents the first large-scale application of asphalt concrete (GB) as the ballast sublayer. This line includes 77 km of conventional track with a granular sublayer of unbound granular material (UGM) and 105 km of track with an asphalt concrete sublayer under the ballast. During construction, instruments such as accelerometers, anchored deflection sensors, and strain gages, among others, were installed on four sections of the track. This paper examines the instrumentation as well as the acquisition system installed on the track. The data processing is explained first, followed by a presentation of the ViscoRail software, developed for modeling railway tracks. The bituminous section’s behavior and response is modeled using a multilayer dynamic response model, implemented in the ViscoRail software. A good match between experimental and calculated results is highlighted.


2021 ◽  
Vol 5 (5) ◽  
pp. 39-43
Author(s):  
Maksim V. SHEVLYUGIN ◽  
◽  
Daria V. SEMENOVA ◽  

When developing a high-speed contact suspension for railways electrified with alternating current, it is important to ensure that the electric rolling stock passes the neutral insert without turning off the current and without reducing the speed of movement. The article provides an analysis of previously developed devices in the field of power supply of electrified railways of single-phase alternating current, in which an attempt was made to pass an electric rolling stock of a neutral insert without disconnecting the load. The device of isolating coupling of a catenary and a neutral insert for high-speed railway lines electrified on alternating current is described. In this case, the passage of the neutral insert is carried out under current and braking of the electric rolling stock will not occur. Among other things, to improve the efficiency of high-speed contact suspension for railways electrified with alternating current, it is proposed to use new materials and new technologies that can be used in the device of insulating coupling of the catenary


2021 ◽  
Vol 65 (192) ◽  
pp. 195-202
Author(s):  
Andrzej Zbieć

In the series of articles describing the aerodynamic phenomena caused by the passage of a train, the effects of a train running at high speed on itself, on other trains, on objects on the track and on people are characterized. This impact can be of two types – generated pressure and slipstream. Apart from the literature analysis, the author’s research is also taken into account. The second part presents the effect of pressure changes on the front and side surfaces of passing trains. Conclusions concerning side windows and windscreens in high-speed railway vehicles and older type railway vehicles with lower allowable speeds and the possibility of using various rolling stock on the same lines are presented. Keywords: rolling stock, high-speed railways, aerodynamic phenomena


2014 ◽  
Vol 505-506 ◽  
pp. 43-48
Author(s):  
Zhong Yang Lv ◽  
Kang Ning Zheng

In this paper, in order to improve the high speed railway sustainable competitive advantage as the research objective, systematic analysis of the high-speed railway to obtain sustainable competitive advantage evaluation index, including high-speed railway traffic function advantage, competitive advantage, advantage of positive externality, the Delphi method is used to scientific empowerment of these factors, by constructing fuzzy comprehensive evaluation model, the research conclusion is highway and air passenger is higher than that in high speed railway of competitive advantage


2012 ◽  
Vol 226-228 ◽  
pp. 102-105
Author(s):  
Wen Qing Zhu ◽  
Yang Yong Zhu

With the rapid development of high-speed railway in China, the aerodynamic brake is very likely to be an important emergency braking mode of high-speed train in the future. This paper takes aerodynamic braking wing as the object, and uses the finite element software to divide the meshes, then analyses the model influenced by static stress. After simulating the vibratory frequency response of the model in the flow field, it finds that the largest deformation happens in the middle of the upper edge of the wind wing, when the wind speed gets to 500km/h and the load frequency to 4Hz. Some conclusions of this thesis can provide reference for researching the applying the aerodynamic brake in the high-speed trains and laying the foundation for solving the riding and braking safety problems.


Sign in / Sign up

Export Citation Format

Share Document