scholarly journals A new selective, and sensitive method for the determination of lixivaptan, a vasopressin 2 (V2)-receptor antagonist, in mouse plasma and its application in a pharmacokinetic study

2018 ◽  
Vol 16 (1) ◽  
pp. 614-620
Author(s):  
Haitham Alrabiah ◽  
Mohammed Abunassif ◽  
Sabry Attia ◽  
Gamal Abdel-Hafiz Mostafa

AbstractA new, selective and sensitive HPLC method for the determination of lixivaptan, an oral selective vasopressin 2 (V2)-receptor antagonist, was investigated and validated. A Waters symmetry C18 column was used as a stationary phase in isocratic elution mode using a mobile phase composed of KH2PO4 (100 mM)-acetonitrile (40: 60, v/v) at a flow rate of 1.5 mL min-1. Diclofenac was used as the internal standard (IS). Lixivaptan and the IS were extracted from plasma by protein precipitation and were detected at 260 nm. Lixivaptan and diclofenac were eluted at 3.6 and 6.2 min, respectively. The developed method showed good linearity over the calibration range of 50 -1000 ng mL-1 with a lower limit of detection of 16.5 ng mL-1. The extraction percentage of lixivaptan in the mouse plasma was in the range of 88.88 - 114.43%, which indicates acceptable extraction. The aforementioned method was validated according to guidelines of the International Council on Harmonization (ICH). The intra- and inter-day coefficients of variation did not exceed 5.5%. This method was presented to be simple, sensitive, and accurate and was successfully adapted in a pharmacokinetic study of the profile of lixivaptan in mouse plasma. A mean maximum plasma concentration of lixivaptan of 113.82 ng mL-1 was achieved in 0.5 h after oral administration of a 10 mg kg-1 dose in mouse as determined using the developed method.

2020 ◽  
Vol 16 (4) ◽  
pp. 404-411
Author(s):  
Hassan Y. Aboul-Enein ◽  
Gamal A.E Mostafa ◽  
Haitham AlRabiah ◽  
Mohammed Al-Ramadi ◽  
Sabry M. Attia ◽  
...  

Aim: A new simple and sensitive high-Performance Liquid Chromatography (HPLC) method for the determination of a potent synthetic cannabinoid THJ-2201, has been developed and validated. Lixiviptan was used as the Internal Standard (IS). Methods: THJ-2201 and IS were extracted from mouse plasma using deproteinization procedure that uses acetonitrile followed by HPLC analysis. The separation was carried out on a reversed-phase C18 column using water and acetonitrile mixture (30:70 v/v). The flow-rate was 1.0 mL/min. Eluting of both THJ-2201 and lixivaptan was performed at 220 nm. Results: The method demonstrated linearity over a calibration range of 95 - 1500 ng/mL and the Limit of Detection (LOD) and Quantitation (LOQ) were 28 ng/mL and 91 ng/mL, respectively. The validation of the proposed method was carried out by following the US Food and Drug Administration (FDA) guidelines. Intra- and inter-day precision did not exceed 6.4%, whereas the accuracy of THJ-2201 measurements was within ±13%. Conclusion: This new method is simple and sensitive and has been applied successfully in a pharmacokinetic study of THJ-2201 in mouse plasma. The mean values of Tmax and Cmax were 0.25 h and 141.87 ± 12.11 ng/mL, respectively.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4109
Author(s):  
Haitham AlRabiah ◽  
Sabry M. Attia ◽  
Nasser S. Al-Shakliah ◽  
Gamal A. E. Mostafa

An accurate and simple HPLC-UV method has been developed for the determination of clonidine in mouse plasma. A reversed phase C18 Nova Pack® column (125 mm × 4.6 mm i.d., × 3 μm particle size) was used as stationary phase. The mobile phase composition was a mixture of 0.1% diethylamine/acetonitrile (70:30, v/v) at pH 8 in an isocratic mode at flow rate was 1.0 mL/min. Detection was set at 210 nm. Tizanidine was used as an internal standard. The clonidine and tizanidine were extracted from plasma matrix using the deproteinization technique. The developed method exhibited a linear calibration range 100.0–2000 ng/mL and the lower limit of detection (LOD) and quantification (LOQ) were 31.0 and 91.9 ng/mL, respectively. The intra-day and inter-day accuracy and precision of the method were within 8.0% and 3.0%, respectively, relative to the nominal concentration. The developed method was validated with respect to linearity, accuracy, precision, and selectivity according to the US Food and drug guideline. Minimal degradation was demonstrated during the determination of clonidine under different stability conditions. The suggested method has been successfully applied during a pharmacokinetic study of clonidine in mouse plasma.


2009 ◽  
Vol 92 (3) ◽  
pp. 837-845 ◽  
Author(s):  
Pattana Sripalakit ◽  
Aurasorn Saraphanchotiwitthaya

Abstract An HPLC method suitable for routine determination of pentoxifylline in human plasma has been adapted and validated. Sample preparation was done by solid-phase extraction. Chloramphenicol was used as the internal standard. The linear range was from 15400 ng/mL (r2 = 0.9994), with a limit of quantitation of 15 ng/mL. The limit of detection was found to be 5 ng/mL. The intra- and interday accuracy ranged from 98.0 to 110.2 and the coefficient of variation was not more than 8.8 for both intra- and interday precision. The absolute recoveries of pentoxifylline and chloramphenicol from human plasma were >97. The method was validated with excellent specificity, accuracy, precision, recovery, and stability. The pharmacokinetic study of a generic pentoxifylline 400 mg tablet in healthy Thai male volunteers after a single dose administration was determined by this developed assay.


2017 ◽  
Vol 20 (2) ◽  
pp. 241-249 ◽  
Author(s):  
A. Jasiecka-Mikołajczyk ◽  
J.J. Jaroszewski

Abstract Tigecycline (TIG), a novel glycylcycline antibiotic, plays an important role in the management of complicated skin and intra-abdominal infections. The available data lack any description of a method for determination of TIG in avian plasma. In our study, a selective, accurate and reversed-phase high performance liquid chromatography-tandem mass spectrometry method was developed for the determination of TIG in turkey plasma. Sample preparation was based on protein precipitation and liquid-liquid extraction using 1,2-dichloroethane. Chromatographic separation of TIG and minocycline (internal standard, IS) was achieved on an Atlantis T3 column (150 mm × 3.0 mm, 3.0 μm) using gradient elution. The selected reaction monitoring transitions were performed at 293.60 m/z → 257.10 m/z for TIG and 458.00 m/z → 441.20 m/z for IS. The developed method was validated in terms of specificity, selectivity, linearity, lowest limit of quantification, limit of detection, precision, accuracy, matrix effect, carry-over effect, extraction recovery and stability. All parameters of the method submitted to validation met the acceptance criteria. The assay was linear over the concentration range of 0.01-100 μg/ml. This validated method was successfully applied to a TIG pharmacokinetic study in turkey after intravenous and oral administration at a dose of 10 mg/kg at various time-points.


2015 ◽  
Vol 13 (2) ◽  
pp. 125-131
Author(s):  
Anisa Alam Tanam ◽  
Mohammad Firoz Khan ◽  
Ridwan Bin Rashid ◽  
Md Zakir Sultan ◽  
Mohammad A Rashid

Acetaminophen (paracetamol) is an analgesic and antipyretic agent with minimum anti-inflammatory properties. In the present study a simple, fast, accurate, precise and reproducible RP-HPLC method has been developed and validated for the quantification of paracetamol in human serum samples using theophylline as internal standard. Protein precipitation with perchloric acid was employed in the extraction of paracetamol and theophylline from biological matrix. The chromatographic separation was accomplished on Phenomenex C18 column with a mobile phase comprising of 0.05 mM sodium sulfate buffer (pH 2.2 ± 0.02 adjusted with phosphoric acid) and acetonitrile at a ratio of 93:7 at a flow rate of 1.0 ml/min. The chromatogram was monitored by UV detection at a wavelength of 254 nm. The method was validated over a linear concentration range of 2-100 ?g/ml and limit of quantification (LOQ) was 1.61 ?g/ml with a correlation coefficient (r2) 0.997. The intra-day and inter-day precision expressed as relative standard deviation were found to be 0.49 - 2.68% and 0.36 - 3.44%, respectively. The average recovery of paracetamol from serum ranged from 99.0 - 106.4%. The method was successfully applied to a pharmacokinetic study after oral administration of immediate release paracetamol tablet (1000 mg) in four healthy Bangladeshi volunteers. The mean Cmax was found to be 11.03 ± 3.21 ?g/ml, which occurred at Tmax of 0.88 ± 0.14 hr. The half life, AUC0-8 and AUC0-? values were found to be 3.09 ± 0.71 hr, 31.06 ± 6.57 hr-?g/ml and 37.92 ± 9.51 hr- ?g/ml, respectively. DOI: http://dx.doi.org/10.3329/dujps.v13i2.21889 Dhaka Univ. J. Pharm. Sci. 13(2): 125-131, 2014 (December)


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Gizem Tiris ◽  
Cansu Alver ◽  
Nevin Erk

Abstract Background A novel rapid, accurate, and stability-indicating reversed-phase high performance liquid chromatographic (RP-HPLC) and first derivative spectrophotometric determination were explained for the assay of vortioxetine (VRT) in bulk and pharmaceutical formulations. For RP-HPLC method, optimal separation and determination of VRT were achieved with a Waters Symmetry C18, (100 × 4.6 mm, 3.5 μm) analytical column using a mobile phase consisting of methanol:0.05 M potassium dihydrogen phosphate (pH:3.0 ± 0.05) (30:70, v/v) in isocratic mode with flow rate of 1.3 mL min−1. Injection volume was 20 μL. The maximum absorption wavelength of VRT is 225.0 nm; hence, 225.0 nm was studied as the detection wavelength and column at 50 °C temperature. The caffeine was used as the internal standard (IS). On the other hand, the first derivative spectrophotometric method for the analysis of vortioxetine was performed by measuring the amplitude at 251.7 and 272.6 nm. Result The HPLC method was found to be linear in the concentration ranges of 10.0-70.0 μg mL−1 with the coefficient value R2 of 0.9998, and the mean recovery value was 100.7%. Further stability studies were done through exposure of the analyte solutions to various stress conditions: acid, alkali hydrolysis, chemical oxidation, and exposure to UV radiation. For the first derivative spectrophotometric method, linearity was observed in the concentration range 6.0-30.0 μg mL−1 (for 237.7 nm R2 = 0.9999 and for 257.2 nm R2 = 0.9997). Conclusion The methods were validated in accordance with ICH guidelines with respect to linearity, accuracy, specificity, limit of detection, precision, and limit of quantification.


2020 ◽  
pp. 1-8
Author(s):  
Safwan Ashour ◽  
Safwan Ashour ◽  
Soulafa Omar

RP–HPLC method has been developed and validated for the determination of simvastatin (SVS) in pure form and in tablets. Fluvastatin sodium was used as internal standard. The determination was performed on Nucleodur column C8 (250×4.6 mm i.d., 5 µm particle size); the mobile phase consisted of a mixture of phosphate buffer solution (KH2PO4 0.05 M, pH 4.83) and methanol (20:80, v/v), pumped at a flow rate 1.0 mL min−1 . Analyte was monitored by UV detection at 230 nm. The mean retention times for fluvastatin and simvastatin were about 4.40 and 9.00 min, respectively. The method was proved linear in the range of 3.5– 550.0 µg mL-1 and exhibited good correlation coefficient (r>0.9998) and excellent mean recovery (100.71– 102.18%). Very good limit of detection of 0.63 µg mL-1 was found for SVS. The method was validated statistically and by recovery studies for linearity, precision, repeatability, and reproducibility. This method was successfully applied to the determination of simvastatin content in four marketed brands from Syria. A good agreement between this method with the pharmacopoeial method for the determination of simvastatin in some real samples demonstrates that the proposed method is suitable to quantify simvastatin in pharmaceutical formulations.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yan-yun Yang ◽  
Liang Xu ◽  
Song-yao Hao ◽  
Yan Li ◽  
Zhen-Qiu Zhang

A sensitive HPLC method was developed for the quantitative determination of isoliquiritin apioside (ILA) and isoliquiritin (IL) in rat plasma. After protein precipitation with acetonitrile, chloroform was used to separate lipid-soluble impurities from the plasma samples and remove acetonitrile. A chromatography was carried out on Diamonsil C18 (150×4.6 mm; 5 μm) analytical column, using a mobile phase consisting of water (containing phosphoric acid 0.1%, v/v); acetonitrile (72 : 28, v/v) at a flow rate of 1.0 mL/min. The wavelength-switching technology was performed to determine ILA and IL at 360 nm and wogonoside (internal standard, IS) at 276 nm. The calibration curves of ILA and IL were fairly linear over the concentration ranges of 0.060–3.84 μg/mL (r=0.9954) and 0.075–4.80 μg/mL (r=0.9968), respectively. The average extract recoveries of ILA, IL, and IS were all over 80%. The precision and accuracy for all concentrations of quality controls and standards were within 15%. The lower limit of quantification (LLOQ) was 0.060 μg/mL for ILA and 0.075 μg/mL for IL. The method was used in pharmacokinetic study after an oral administration of Zhigancao extract to rats.


2009 ◽  
Vol 6 (3) ◽  
pp. 915-919 ◽  
Author(s):  
M. K. Sahoo ◽  
R. K. Giri ◽  
C. S. Barik ◽  
S. K. Kanungo ◽  
B. V. V. Ravi Kumar

A reverse phase HPLC method is described for the determination of nebivolol in tablet dosage form. Chromatography was carried on a Hypersil ODS C18column using a mixture of methanol and water (80:20 v/v) as the mobile phase at a flow rate of 1.0 mL/min with detection at 282 nm. Chlorzoxazone was used as the internal standard. The retention times were 3.175 min and 4.158 min for nebivolol and chlorzoxazone respectively. The detector response was linear in the concentration of 1-400 μg/mL. The limit of detection and limit of quantification was 0.0779 and 0.2361 μg/mL respectively. The percentage assay of nebivolol was 99.974%. The method was validated by determining its sensitivity, accuracy and precision. The proposed method is simple, fast, accurate and precise and hence can be applied for routine quality control of nebivolol in bulk and tablet dosage form.


2019 ◽  
Vol 15 (5) ◽  
pp. 591-598 ◽  
Author(s):  
Haitham Alrabiah ◽  
Ahmed Bakheit ◽  
Sabray Attia ◽  
Gamal A.E. Mostafa

Background: Conivaptan inhibits two of vasopressin receptor (vasopressin receptor V1a and V2). Conivaptan is used for the treatment of hyponatremia, and in some instances, for the treatment of the heart failure. Methods: The present study aimed to develop a simple, sensitive, and accurate HPLC with ultraviolet detection for the assay of conivaptan (CON) in mouse plasma using bisoprolol as internal standard (IS). A precipitation procedure was used to extract CON and the IS from the mouse plasma. CON was chromatographically separated using a C18 analytical column at 25°C. The separation was carried out using a mixture of phosphate buffer (50 mM): acetonitrile (60: 40, v/v, pH 4.5) with a flow rate of 1.0 mL/min and detection was performed at 240 nm. Results: The assay was validated according to the US Food and Drug (FDA) guidelines. The method demonstrated linearity over a concentration range of 150 - 2000 ng/mL (correlation coefficient: r 2 = 0.9985). The mean recovery of CON from the mouse plasma was 101.13%. All validation parameters for CON were within the acceptable range. Conclusion: The investigated method has been shown to be suitable for estimating the CON in plasma samples, and this method is sensitive and highly selective, allowing the estimation of its concentrations up to the nano-scale. The suggested method was successfully used in a pharmacokinetic study of CON in mouse plasma.


Sign in / Sign up

Export Citation Format

Share Document