scholarly journals Thermoelectrically induced nonlinear free vibration analysis of piezo laminated composite conical shell panel with random fiber orientation

2017 ◽  
Vol 4 (1) ◽  
pp. 237-254 ◽  
Author(s):  
Achchhe Lal ◽  
Niranjan L. Shegokar

Abstract This paper presents the free vibration response of piezo laminated composite geometrically nonlinear conical shell panel subjected to a thermo-electrical loading. The temperature field is assumed to be a uniform distribution over the shell surface and through the shell thickness and the electric field is assumed to be the transverse component E2 only. The material properties are assumed to be independent of the temperature and the electric field. The basic formulation is based on higher order shear deformation plate theory (HSDT) with von-Karman nonlinearity. A C0 nonlinear finite element method based on direct iterative approach is outlined and applied to solve nonlinear generalized eigenvalue problem. Parametric studies are carried out to examine the effect of amplitude ratios, stacking sequences, cone angles, piezoelectric layers, applied voltages, circumferential length to thickness ratios, change in temperatures and support boundary conditions on the nonlinear natural frequency of laminated conical shell panels. The present outlined approach has been validated with those available results in the literature.

2016 ◽  
Vol 54 (6) ◽  
pp. 771
Author(s):  
Trinh Anh Tuan ◽  
Tran Huu Quoc ◽  
Tran Minh Tu

A study on the free vibration analysis of stiffened laminated composite cylindrical shell is described in this paper. The eight-noded isoparametric degenerated shell element is developed to model both shell panel and stiffeners by using the degenerated solid concept based on Reissner-Mindlin assumptions which taking to account the shear deformation and rotatory effect. Numerical results are presented and comparison is made with the published results from the literature and the good agreement is found. Parametric studies considering different geometrical variables of shell and stiffeners have also been carried out.


Author(s):  
Morteza Balak ◽  
Saeed Jafari Mehrabadi ◽  
Hamid Mohseni Monfared ◽  
Hassan Feizabadi

Porous materials are used extensively to manufacture beams, plates, and shells, and have been studies from different perspectives. Composite porous plates in various shapes and dimensions have numerous industrial applications. The vibration behaviors of rectangular and circular plates have been previously studied; however, less attention has been paid to the analysis of complex configuration, such as elliptical plates. We analyzed the free vibration of composite elliptical plates, consisting of a porous core and two piezoelectric layers. The governing equations were based on the classical plate theory and Rayleigh–Ritz’s energy method. The properties of porous materials with varying thickness of the core and porosity distributions continuously undergo changes due to the intended applications and functions. The proposed theoretical functions satisfy the boundary conditions in simple and clamped forms, and with a high degree of accuracy in the frequencies. Finally, we investigated the effects of important variables, such as geometric parameters and material specifications on the natural frequencies. The results of our analyses were consistent with the findings of previous studies. Based on our vibration analyses, the most crucial factors in composite elliptical plates are geometrical parameters, material specifications, and their effects on the vibration frequencies of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document