Derivative Free Regularization Method for Nonlinear Ill-Posed Equations in Hilbert Scales

2019 ◽  
Vol 19 (4) ◽  
pp. 765-778
Author(s):  
Santhosh George ◽  
K. Kanagaraj

AbstractIn this paper, we deal with nonlinear ill-posed operator equations involving a monotone operator in the setting of Hilbert scales. Our convergence analysis of the proposed derivative-free method is based on the simple property of the norm of a self-adjoint operator. Using a general Hölder-type source condition, we obtain an optimal order error estimate. Also we consider the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter. Finally, we applied the proposed method to the parameter identification problem in an elliptic PDE in the setting of Hilbert scales and compare the results with the corresponding method in Hilbert space.

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Santhosh George ◽  
C. D. Sreedeep ◽  
Ioannis K. Argyros

Abstract In this paper, we study secant-type iteration for nonlinear ill-posed equations involving 𝑚-accretive mappings in Banach spaces. We prove that the proposed iterative scheme has a convergence order at least 2.20557 using assumptions only on the first Fréchet derivative of the operator. Further, using a general Hölder-type source condition, we obtain an optimal error estimate. We also use the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter.


2003 ◽  
Vol 2003 (39) ◽  
pp. 2487-2499 ◽  
Author(s):  
Santhosh George ◽  
M. Thamban Nair

Recently, Tautenhahn and Hämarik (1999) have considered a monotone rule as a parameter choice strategy for choosing the regularization parameter while considering approximate solution of an ill-posed operator equationTx=y, whereTis a bounded linear operator between Hilbert spaces. Motivated by this, we propose a new discrepancy principle for the simplified regularization, in the setting of Hilbert scales, whenTis a positive and selfadjoint operator. When the datayis known only approximately, our method provides optimal order under certain natural assumptions on the ill-posedness of the equation and smoothness of the solution. The result, in fact, improves an earlier work of the authors (1997).


2012 ◽  
Vol 12 (1) ◽  
pp. 32-45 ◽  
Author(s):  
Santhosh George ◽  
Atef Ibrahim Elmahdy

AbstractIn this paper, we consider an iterative method for the approximate solution of the nonlinear ill-posed operator equation Tx = y. The iteration procedure converges quadratically to the unique solution of the equation for the regularized approximation. It is known that (Tautanhahn (2002)) this solution converges to the solution of the given ill-posed operator equation. The convergence analysis and the stopping rule are based on a suitably constructed majorizing sequence. We show that the adaptive scheme considered by Perverzev and Schock (2005) for choosing the regularization parameter can be effectively used here for obtaining an optimal order error estimate.


2020 ◽  
Vol 20 (2) ◽  
pp. 321-341
Author(s):  
Pallavi Mahale ◽  
Sharad Kumar Dixit

AbstractIn this paper, we consider a simplified iteratively regularized Gauss–Newton method in a Banach space setting under a general source condition. We will obtain order-optimal error estimates both for an a priori stopping rule and for a Morozov-type stopping rule together with a posteriori choice of the regularization parameter. An advantage of a general source condition is that it provides a unified setting for the error analysis which can be applied to the cases of both severely and mildly ill-posed problems. We will give a numerical example of a parameter identification problem to discuss the performance of the method.


2018 ◽  
Vol 40 (1) ◽  
pp. 606-627 ◽  
Author(s):  
R Boiger ◽  
A Leitão ◽  
B F Svaiter

Abstract In this article we propose a novel nonstationary iterated Tikhonov (NIT)-type method for obtaining stable approximate solutions to ill-posed operator equations modeled by linear operators acting between Hilbert spaces. Geometrical properties of the problem are used to derive a new strategy for choosing the sequence of regularization parameters (Lagrange multipliers) for the NIT iteration. Convergence analysis for this new method is provided. Numerical experiments are presented for two distinct applications: (I) a two-dimensional elliptic parameter identification problem (inverse potential problem); and (II) an image-deblurring problem. The results obtained validate the efficiency of our method compared with standard implementations of the NIT method (where a geometrical choice is typically used for the sequence of Lagrange multipliers).


2017 ◽  
Vol 22 (3) ◽  
pp. 283-299
Author(s):  
Sergii G. Solodky ◽  
Ganna L. Myleiko ◽  
Evgeniya V. Semenova

In the article the authors developed two efficient algorithms for solving severely ill-posed problems such as Fredholm’s integral equations. The standard Tikhonov method is applied as a regularization. To select a regularization parameter we employ two different a posteriori rules, namely, discrepancy and balancing principles. It is established that proposed strategies not only achieved optimal order of accuracy on the class of problems under consideration, but also they are economical in the sense of used discrete information.


2017 ◽  
Vol 25 (5) ◽  
pp. 543-551 ◽  
Author(s):  
Santhosh George ◽  
M. Thamban Nair

AbstractRecently, Semenova [12] considered a derivative free iterative method for nonlinear ill-posed operator equations with a monotone operator. In this paper, a modified form of Semenova’s method is considered providing simple convergence analysis under more realistic nonlinearity assumptions. The paper also provides a stopping rule for the iteration based on an a priori choice of the regularization parameter and also under the adaptive procedure considered by Pereverzev and Schock [11].


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Santhosh George ◽  
Suresan Pareth

A two step modified Newton method is considered for obtaining an approximate solution for the nonlinear ill-posed equation F(x)=f when the available data are fδ with ‖f−fδ‖≤δ and the operator F is monotone. The derived error estimate under a general source condition on x0−x^ is of optimal order; here x0 is the initial guess and x^ is the actual solution. The regularization parameter is chosen according to the adaptive method considered by Perverzev and Schock (2005). The computational results provided endorse the reliability and effectiveness of our method.


2018 ◽  
Vol 26 (3) ◽  
pp. 311-333 ◽  
Author(s):  
Pallavi Mahale ◽  
Sharad Kumar Dixit

AbstractJin Qinian and Min Zhong [10] considered an iteratively regularized Gauss–Newton method in Banach spaces to find a stable approximate solution of the nonlinear ill-posed operator equation. They have considered a Morozov-type stopping rule (Rule 1) as one of the criterion to stop the iterations and studied the convergence analysis of the method. However, no error estimates have been obtained for this case. In this paper, we consider a modified variant of the method, namely, the simplified Gauss–Newton method under both an a priori as well as a Morozov-type stopping rule. In both cases, we obtain order optimal error estimates under Hölder-type approximate source conditions. An example of a parameter identification problem for which the method can be implemented is discussed in the paper.


Sign in / Sign up

Export Citation Format

Share Document