scholarly journals Error Estimation and Adaptivity for Differential Equations with Multiple Scales in Time

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Leopold Lautsch ◽  
Thomas Richter

Abstract We consider systems of ordinary differential equations with multiple scales in time. In general, we are interested in the long time horizon of a slow variable that is coupled to solution components that act on a fast scale. Although the fast scale variables are essential for the dynamics of the coupled problem, they are often of no interest in themselves. Recently, we have proposed a temporal multiscale approach that fits into the framework of the heterogeneous multiscale method and that allows for efficient simulations with significant speedups. Fast and slow scales are decoupled by introducing local averages and by replacing fast scale contributions by localized periodic-in-time problems. Here, we generalize this multiscale approach to a larger class of problems, but in particular, we derive an a posteriori error estimator based on the dual weighted residual method that allows for a splitting of the error into averaging error, error on the slow scale and error on the fast scale. We demonstrate the accuracy of the error estimator and also its use for adaptive control of a numerical multiscale scheme.

2014 ◽  
Vol 14 (2) ◽  
pp. 203-230 ◽  
Author(s):  
Dominik Meidner ◽  
Thomas Richter

Abstract. In this work, we derive a goal-oriented a posteriori error estimator for the error due to time-discretization of nonlinear parabolic partial differential equations by the fractional step theta method. This time-stepping scheme is assembled by three steps of the general theta method, that also unifies simple schemes like forward and backward Euler as well as the Crank–Nicolson method. Further, by combining three substeps of the theta time-stepping scheme, the fractional step theta time-stepping scheme is derived. It possesses highly desired stability and numerical dissipation properties and is second order accurate. The derived error estimator is based on a Petrov–Galerkin formulation that is up to a numerical quadrature error equivalent to the theta time-stepping scheme. The error estimator is assembled as one weighted residual term given by the dual weighted residual method and one additional residual estimating the Galerkin error between time-stepping scheme and Petrov–Galerkin formulation.


2016 ◽  
Vol 9 (4) ◽  
pp. 619-639 ◽  
Author(s):  
Zhong-Qing Wang ◽  
Jun Mu

AbstractWe introduce a multiple interval Chebyshev-Gauss-Lobatto spectral collocation method for the initial value problems of the nonlinear ordinary differential equations (ODES). This method is easy to implement and possesses the high order accuracy. In addition, it is very stable and suitable for long time calculations. We also obtain thehp-version bound on the numerical error of the multiple interval collocation method underH1-norm. Numerical experiments confirm the theoretical expectations.


2013 ◽  
Vol 24 (01) ◽  
pp. 113-144 ◽  
Author(s):  
MARKUS AURADA ◽  
JENS M. MELENK ◽  
DIRK PRAETORIUS

We introduce a stabilized conforming mixed finite element method for a macroscopic model in micromagnetics. We show well-posedness of the discrete problem for higher order elements in two and three dimensions, develop a full a priori analysis for lowest order elements, and discuss the extension of the method to higher order elements. We introduce a residual-based a posteriori error estimator and present an adaptive strategy. Numerical examples illustrate the performance of the method.


2018 ◽  
Vol 75 (11) ◽  
pp. 1902-1914 ◽  
Author(s):  
Lu Guan ◽  
John F. Dower ◽  
Pierre Pepin

Spatial structures of larval fish in the Strait of Georgia (British Columbia, Canada) were quantified in the springs of 2009 and 2010 to investigate linkages to environmental heterogeneity at multiple scales. By applying a multiscale approach, principal coordinate neighborhood matrices, spatial variability was decomposed into three predefined scale categories: broad scale (>40 km), medium scale (20∼40 km), and fine scale (<20 km). Spatial variations in larval density of the three dominant fish taxa with different early life histories (Pacific herring (Clupea pallasii), Pacific hake (Merluccius productus), and northern smoothtongue (Leuroglossus schmidti)) were mainly structured at broad and medium scales, with scale-dependent associations with environmental descriptors varying interannually and among species. Larval distributions in the central-southern Strait were mainly associated with salinity, temperature, and vertical stability of the top 50 m of the water column on the medium scale. Our results emphasize the critical role of local estuarine circulation, especially at medium spatial scale, in structuring hierarchical spatial distributions of fish larvae in the Strait of Georgia and suggest the role of fundamental differences in life-history traits in influencing the formation and maintenance of larval spatial structures.


2021 ◽  
Vol 36 (6) ◽  
pp. 313-336
Author(s):  
Ronald H. W. Hoppe ◽  
Youri Iliash

Abstract We are concerned with an Interior Penalty Discontinuous Galerkin (IPDG) approximation of the p-Laplace equation and an equilibrated a posteriori error estimator. The IPDG method can be derived from a discretization of the associated minimization problem involving appropriately defined reconstruction operators. The equilibrated a posteriori error estimator provides an upper bound for the discretization error in the broken W 1,p norm and relies on the construction of an equilibrated flux in terms of a numerical flux function associated with the mixed formulation of the IPDG approximation. The relationship with a residual-type a posteriori error estimator is established as well. Numerical results illustrate the performance of both estimators.


Sign in / Sign up

Export Citation Format

Share Document