Effect of interfacial film on the corrosion behaviour of X80 pipeline steel in a neutral soil environment containing sulphate-reducing bacteria

2017 ◽  
Vol 35 (6) ◽  
pp. 445-453 ◽  
Author(s):  
Dan Wang ◽  
Fei Xie ◽  
Xue Li ◽  
Xingfa Wang ◽  
Jiaqi Liu ◽  
...  

AbstractX80 pipeline steel is inevitably corroded by sulphate-reducing bacteria (SRB) in soil. Corrosion-induced damage to the pipeline steel could result in serious consequences. Studies have shown the critical role of interfacial film in SRB-induced corrosion. However, the specific effect of interfacial film was not examined. The effect of film on the corrosion of X80 steel in neutral soil environment was determined using scanning electron microscopy, energy-dispersive spectroscopy, and electrochemical impedance spectroscopy. The structure and electrochemical characteristics of the surface film of X80 steel were examined in the presence of SRB in Shenyang soil. The results showed that, at the beginning of immersion (14 h), the steel surface mainly adsorbed the SRB biofilm, and the biofilm slowed down the corrosion reaction. A small amount of the biofilm and corrosion product film was observed on the electrode surface after immersion for 14–48 h. The corrosion product film destroyed the protection of the biofilm, increasing corrosion. After immersion for 48 h, the corrosion product contents and polarisation resistance increased. After immersion for 240 h, a dense corrosion product film formed on the sample surface, showing the least corrosion. The protective effect of corrosion products on X80 steel was much greater than that of the biofilm.

2021 ◽  
Vol 68 (5) ◽  
pp. 438-448
Author(s):  
Haoping Peng ◽  
Zhaolin Luan ◽  
Jun Liu ◽  
Yun Lei ◽  
Junxiu Chen ◽  
...  

Purpose This paper aims to under the laboratory environment, the corrosion behavior of X80 pipeline steel in oilfield injection water in eastern China was studied by immersion test. Design/methodology/approach First, the corrosion product film was immersed in oilfield injection water and the effect on the corrosion behavior and the corrosion reaction mechanism were constantly observed during this period. The effect was displayed by potentiodynamic polarization curve and electrochemical impedance spectrums (EIS) measurements. Second, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction were used to observe and test the corrosion product film immersed in the oilfield water for 30 days. Findings The results indicate that the tendency of metal corrosion becomes weaker at an early stage, but strengthened later, which means the corrosion rate is accelerating. Besides, it is indicated by impedance spectroscopy that with the decreasing of the capacitance arc radius, the reaction resistance is reducing in this progress. Meanwhile, the character of Warburg impedance could be found in EIS, which means that the erosional components are more likely to penetrate the product film to reach the matrix. The corrosion product is mainly composed of the inner Fe3O4 layer and outer shell layer, which contains a large number of calcium carbonate granular deposits. It is this corrosion under fouling that produces severe localized corrosion, forming many etch pits on the metal substrate. Originality/value The experiment chose the X80 steel, the highest-grade pipeline steel used in China, to conduct the static immersion test in the injection water coming from an oilfield in eastern China. Accordingly, the corrosion mechanism and the effect of corrosion product film on the corrosion of pipeline steel were analyzed and discussed.


2014 ◽  
Vol 39 (25) ◽  
pp. 13919-13925 ◽  
Author(s):  
Shuqi Zheng ◽  
Chengshuang Zhou ◽  
Xingyang Chen ◽  
Lin Zhang ◽  
Jinyang Zheng ◽  
...  

2012 ◽  
Vol 476-478 ◽  
pp. 321-328
Author(s):  
Cong Min Xu ◽  
Rong Biao Li ◽  
Ji Long Wang ◽  
Gang Gang Zhang

The influence of microstructures with different heat treatments to stimulate the weld fusion zone and HAZ on corrosion properties of X80 pipeline steel was investigated in alkaline sand soil using electrochemical measurement and surface analysis(SEM, EDS and XRD). The results showed that the microstructure of X80 steel affected the properties of corrosion product layers. Generally, X80 steels with heat treatments had a higher corrosion rate than the as-received steel. The increase of pearlite content enhanced the corrosion of ferrite through a galvanic effect. The appearance of upper bainite and martenite increased further the activity of the steel. The corrosion product layer formed on as-received X80 steel was compact and complete, provided an effective protection to the underneath steel. However, the corrosion product layers on the heat-treated X80 steels were generally inhomogeneous, loose, porous and defective, and provided minor protectiveness. The cathodic/ anodic reactions of X80 steel are dominated by the oxygen reduction and formation of iron oxides that deposit on the steel surface which was through a physical block effect to afford the protection. We shall be able to publish your paper in electronic form on our web page http://www.scientific.net, if the paper format and the margins are correct. Your manuscript will be reduced by approximately 20% by the publisher. Please keep this in mind when designing your figures and tables etc.


2012 ◽  
Vol 476-478 ◽  
pp. 212-217 ◽  
Author(s):  
Jin Heng Luo ◽  
Cong Min Xu

The influence of microstructures with different heat treatments on corrosion properties of X80 pipeline steel was investigated in near-neutral pH soil using electrochemical measurement and surface analysis(SEM, EDS and XRD). The results showed that the microstructure of X80 steel affected the properties of corrosion product layers. Generally, X80 steels with heat treatments had a higher corrosion rate than the as-received steel. The increase of pearlite content enhanced the corrosion of ferrite through a galvanic effect. The appearance of upper bainite and martenite increased further the activity of the steel. The corrosion product layer formed on as-received X80 steel was compact and complete, provided an effective protection to the underneath steel. However, the corrosion product layers on the heat-treated X80 steels were generally inhomogeneous, loose, porous and defective, and provided minor protectiveness. The cathodic/anodic reactions of X80 steel are dominated by the oxygen reduction and formation of iron oxides that deposit on the steel surface which was through a physical block effect to afford the protection.


2015 ◽  
Vol 62 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Jie Zhang ◽  
Jing Liu ◽  
Qian Hu ◽  
Feng Huang ◽  
ZhaoYang Cheng ◽  
...  

Purpose – The aim of this paper was to clarify the influence of tensile stress on the electrochemical behavior of X80 steel in a simulated acid soil solution and attempt to understand mechanistic aspects of the corrosion behaviors of X80 under these conditions. Design/methodology/approach – The electrochemical behavior of X80 steel at various tensile stresses was investigated in a simulated acid soil solution using electrochemical impedance spectroscopy, potentiodynamic scan measurements and surface analysis techniques. Findings – The results show that as tensile stress was increased, the open-circuit potential decreased, the reaction activity increase, the reaction resistance (Rct)value became smaller by degrees, the corrosion product film resistance (Rf) first decreased and then increased and polarization current densities changed conversely. The corrosion product film was compact and continuous under the low stress, whereas it was relatively loose under high-stress conditions. Tensile stress promotes the movement of dislocations, which become active points when they move to the steel surface. The increase in the number of active points enhances the anodic dissolution rate and promotes the formation of corrosion product film whose blocking effect can decrease the dissolution rate. The corrosion rate of the specimen is determined by these two effects. Originality/value – This research provides an essential insight into the mechanism of the electrochemical behavior of X80 steel in acid soil environments.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 625
Author(s):  
Lijuan Chen ◽  
Bo Wei ◽  
Xianghong Xu

The influence of sulfate-reducing bacteria (SRB) on the corrosion behaviors of X80 pipeline steel was investigated in a soil environment by electrochemical techniques and surface analysis. It was found that SRB grew well in the acidic soil environment and further attached to the coupon surface, resulting in microbiologically influenced corrosion (MIC) of the steel. The corrosion process of X80 steel was significantly affected by the SRB biofilm on the steel surface. Steel corrosion was inhibited by the highly bioactive SRB biofilm at the early stage of the experiment, while SRB can accelerate the corrosion of steel at the later stage of the experiment. The steel surface suffered severe pitting corrosion in the SRB-containing soil solution.


Sign in / Sign up

Export Citation Format

Share Document