Numerical Investigation of Heat Transfer and Fluid Flow Characteristics in Circular Wavy Microchannels with Sidewall Rib

2020 ◽  
Vol 15 (2) ◽  
Author(s):  
Ranjith Kumar Valaparla ◽  
Karthik Balasubramanian ◽  
Kupireddy Kiran Kumar

AbstractPurpose: Numerical investigation was carried out to study the hydro-thermal characteristics in circular wavy microchannels (CWMCs) with sidewall rib. Thermal resistance and pressure drop penalty were compared with sinusoidal wavy microchannels (SWMCs) design. Parametric study on sidewall rib was also carried to minimize the pressure drop penalty and to achieve lower thermal resistance. Introducing sidewall rib in the CWMCs leads to the formation of more Deans vortices. This leads to an effective fluid mixing and augments the convective heat transfer. Design methodology/approach: A computational solid domain was created in SOLIDWORKS and the fluid domain was produced by circular arc profile for the entire length of heat sink. 3-D numerical investigation was carried out using ANSYS FLUENT software. Created computational domain was imported into ANSYS WORKBENCH. Meshing was executed in ANSYS mesh module. The computational domains were meshed using hexahedral elements adopting match control on both sides of microchannel (MC). The numerical investigation was carried out in the Re range from 100 to 300 with constant heat flux (50 W/cm2) applied at the bottom of the channel. Heat transfer and fluid flow characteristics were explained with velocity vectors, velocity contours and temperature contours. Findings: From numerical studies, it is concluded that CWMC with sidewall rib width (0.15 mm) leads to 33.6 % lower thermal resistance than SWMC with pressure drop penalty. Originality/Value: Present study is useful to identify the optimum deign to augment the heat dissipation performance of microchannel heat sink.

Author(s):  
M. P. Wang ◽  
T. Y. Wu ◽  
J. T. Horng ◽  
C. Y. Lee ◽  
Y. H. Hung

A series of experimental investigations with a stringent measurement method on the study of the fluid flow behavior for confined compact heat sinks in forced convection have been successfully conducted. In the present study, a theoretical model to effectively predict the velocity and pressure drop for partially-confined heat sinks has been successfully developed. The air velocities flowing into heat sink Us through side bypass U1 and top bypass U2 for various 0.47<H/Hc<1 ratios are evaluated, where H/Hc is the ratio of the heat sink height to channel height. The maximum and average deviations of the velocities predicted by the present model from the experimental data are less than 20.31% and 13.13%, respectively, for confined compact heat sinks. Besides, the results show a good agreement between the predicted results and the experimental data of the pressure drop for the cases of H/Hc = 1. Nevertheless, the relative deviation of the predictions from the experimental data becomes more significant with decreasing H/Hc ratio, i.e., increasing the top bypass of confined compact heat sink. A new modified correlation of pressure drop including the H/Hc effect is presented. The maximum and average deviations of the results predicted by the new correlation from the experimental data are 14.48% and 7.72%, respectively.


Sign in / Sign up

Export Citation Format

Share Document