scholarly journals Preparation of the high dielectric performance flexible materials achieved by polyacrylamide/poly(vinylidene fluoride) blends

e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Rui Li ◽  
Chuanxi Xiong ◽  
Lijie Dong

AbstractA novel all-polymeric material with high dielectric constant (k) has been developed by blending poly(vinylidene fluoride) (PVDF) with polyacrylamide (PAM). The dependence of the dielectric constant on frequency and polymer volume fraction was investigated. When the weight fraction of PAM is 1wt%, the dielectric constant of the blend could be up to 24, and the dielectric loss tanδ can be lowered to 0.06. The SEM investigations suggest that the enhanced dielectric behavior originates from significant interfacial interactions of polymer-polymer. XRD and FTIR demonstrate that blending PAM with PVDF affects the crystalline behavior of each component. Our finding suggests that the created high-k polymeric blends represent a novel type of material that are flexible and easy to process, and is of relatively high dielectric constant and high breakdown strength; moreover find applications as flexible electronics.

2012 ◽  
Vol 496 ◽  
pp. 263-267
Author(s):  
Rui Li ◽  
Jian Zhong Pei ◽  
Yan Wei Li ◽  
Xin Shi ◽  
Qun Le Du

A novel all-polymeric material with high dielectric constant (k) has been developed by blending poly (vinylidene fluoride) (PVDF) with polyamide-6 (PA6). The dependence of the dielectric properties on frequency and polymer volume fraction was investigated. When the volume fraction of PA6 is 20%, the dielectric property is better than others. The SEM investigations suggest that the enhanced dielectric behavior originates from significant interfacial interactions of polymer-polymer. The XRD demonstrate that the PA6 and PVDF affect the crystalline behavior of each component. Furthermore, the stable dielectric constants of the blends could be tuned by adjusting the content of the polymers. The created high-k all-polymeric blends represent a novel type of material that are simple technology and easy to process, and is of relatively high dielectric constant, applications as flexible electronics.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1541 ◽  
Author(s):  
Yongchang Jiang ◽  
Zhao Zhang ◽  
Zheng Zhou ◽  
Hui Yang ◽  
Qilong Zhang

Polymer dielectric materials are extensively used in electronic devices. To enhance the dielectric constant, ceramic fillers with high dielectric constant have been widely introduced into polymer matrices. However, to obtain high permittivity, a large added amount (>50 vol%) is usually needed. With the aim of improving dielectric properties with low filler content, satellite–core-structured Fe2O3@BaTiO3 (Fe2O3@BT) nanoparticles were fabricated as fillers for a poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) matrix. The interfacial polarization effect is increased by Fe2O3 nanoparticles, and thus, composite permittivity is enhanced. Besides, the satellite–core structure prevents Fe2O3 particles from directly contacting each other, so that the dielectric loss remains relatively low. Typically, with 20 vol% Fe2O3@BT nanoparticle fillers, the permittivity of the composite is 31.7 (1 kHz), nearly 1.8 and 3.0 times that of 20 vol% BT composites and pure polymers, respectively. Nanocomposites also achieve high breakdown strength (>150 KV/mm) and low loss tangent (~0.05). Moreover, the composites exhibited excellent flexibility and maintained good dielectric properties after bending. These results demonstrate that composite films possess broad application prospects in flexible electronics.


2017 ◽  
Vol 898 ◽  
pp. 2101-2106
Author(s):  
Zhong Yang Wang ◽  
Xin Yan Li ◽  
Run Hua Fan ◽  
Pei Tao Xie ◽  
Kai Sun ◽  
...  

Conductor–insulator composites have been extensive researched for high dielectric constant. Most of them concentrated on metal polymers or metal ceramics. Barium titanate–carbon fibers composites were prepared by using a solid state reaction process with carbon fibers contents ranging from7 vol% to 23 vol%. Due to the high-aspect-ratio of carbon fiber, it was easy to produce a conducting network at much lower volume fraction. FESEM images illustrated that the carbon fibers influenced the densification and microstructure of the ceramics. Besides, addition of carbon fibers led to increase in dielectric permittivity, also had effects on the dielectric loss and ac conductivity. The dielectric and conductivity properties as a function of carbon fibers volume fraction were explained by the percolation theory.


Polymer ◽  
2021 ◽  
Vol 214 ◽  
pp. 123349
Author(s):  
N. Pereira ◽  
S. Gonçalves ◽  
J.C. Barbosa ◽  
R. Gonçalves ◽  
C.R. Tubio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document