Two point fractional boundary value problems with a fractional boundary condition

2018 ◽  
Vol 21 (2) ◽  
pp. 442-461 ◽  
Author(s):  
Jeffrey W. Lyons ◽  
Jeffrey T. Neugebauer

Abstract In this paper, we employ Krasnoseľskii’s fixed point theorem to show the existence of positive solutions to three different two point fractional boundary value problems with fractional boundary conditions. Also, nonexistence results are given.

2017 ◽  
Vol 33 (2) ◽  
pp. 207-217
Author(s):  
WENJUN LIU ◽  
◽  
HEFENG ZHUANG ◽  

In this paper, we investigate the existence results for Caputo fractional boundary value problems with integral conditions. Our analysis relies on Banach’s contraction principle, Leray-Schauder nonlinear alternative, Boyed and Wong fixed point theorem, and Krasnoselskii’s fixed point theorem. As applications, some examples are provided to illustrate our main results.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Hongjie Liu ◽  
Xiao Fu ◽  
Liangping Qi

We are concerned with the following nonlinear three-point fractional boundary value problem:D0+αut+λatft,ut=0,0<t<1,u0=0, andu1=βuη, where1<α≤2,0<β<1,0<η<1,D0+αis the standard Riemann-Liouville fractional derivative,at>0is continuous for0≤t≤1, andf≥0is continuous on0,1×0,∞. By using Krasnoesel'skii's fixed-point theorem and the corresponding Green function, we obtain some results for the existence of positive solutions. At the end of this paper, we give an example to illustrate our main results.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Imed Bachar ◽  
Said Mesloub

We consider singular nonlinear Hadamard fractional boundary value problems. Using properties of Green’s function and a fixed point theorem, we show that the problem has positive solutions which blow up. Finally, some examples are provided to explain the applications of the results.


Author(s):  
D. D. Hai ◽  
Seth F. Oppenheimer

SynopsisWe consider the existence of positive solutions to a class of singular nonlinear boundary value problems for P-Laplacian-like equations. Our approach is based on the Schauder Fixed-Point Theorem.


2021 ◽  
Vol 26 (6) ◽  
pp. 1087-1105
Author(s):  
Yuxin Zhang ◽  
Xiping Liu ◽  
Mei Jia

In this paper, we study the multi-point boundary value problems for a new kind of piecewise differential equations with left and right fractional derivatives and delay. In this system, the state variables satisfy the different equations in different time intervals, and they interact with each other through positive and negative delay. Some new results on the existence, no-existence and multiplicity for the positive solutions of the boundary value problems are obtained by using Guo–Krasnoselskii’s fixed point theorem and Leggett–Williams fixed point theorem. The results for existence highlight the influence of perturbation parameters. Finally, an example is given out to illustrate our main results.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 526
Author(s):  
Ehsan Pourhadi ◽  
Reza Saadati ◽  
Sotiris K. Ntouyas

Throughout this paper, via the Schauder fixed-point theorem, a generalization of Krasnoselskii’s fixed-point theorem in a cone, as well as some inequalities relevant to Green’s function, we study the existence of positive solutions of a nonlinear, fractional three-point boundary-value problem with a term of the first order derivative ( a C D α x ) ( t ) = f ( t , x ( t ) , x ′ ( t ) ) , a < t < b , 1 < α < 2 , x ( a ) = 0 , x ( b ) = μ x ( η ) , a < η < b , μ > λ , where λ = b − a η − a and a C D α denotes the Caputo’s fractional derivative, and f : [ a , b ] × R × R → R is a continuous function satisfying the certain conditions.


2003 ◽  
Vol 46 (2) ◽  
pp. 279-292 ◽  
Author(s):  
Ruyun Ma

AbstractIn this paper we consider the existence of positive solutions to the boundary-value problems\begin{align*} (p(t)u')'-q(t)u+\lambda f(t,u)\amp=0,\quad r\ltt\ltR, \\[2pt] au(r)-bp(r)u'(r)\amp=\sum^{m-2}_{i=1}\alpha_iu(\xi_i), \\ cu(R)+dp(R)u'(R)\amp=\sum^{m-2}_{i=1}\beta_iu(\xi_i), \end{align*}where $\lambda$ is a positive parameter, $a,b,c,d\in[0,\infty)$, $\xi_i\in(r,R)$, $\alpha_i,\beta_i\in[0,\infty)$ (for $i\in\{1,\dots m-2\}$) are given constants satisfying some suitable conditions. Our results extend some of the existing literature on superlinear semipositone problems. The proofs are based on the fixed-point theorem in cones.AMS 2000 Mathematics subject classification: Primary 34B10, 34B18, 34B15


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Yuanyuan Pan ◽  
Zhenlai Han ◽  
Shurong Sun ◽  
Yige Zhao

We study the existence of solutions for the boundary value problem-Δνy1(t)=f(y1(t+ν-1),y2(t+μ-1)),-Δμy2(t)=g(y1(t+ν-1),y2(t+μ-1)),y1(ν-2)=Δy1(ν+b)=0,y2(μ-2)=Δy2(μ+b)=0, where1<μ,ν≤2,f,g:R×R→Rare continuous functions,b∈N0. The existence of solutions to this problem is established by the Guo-Krasnosel'kii theorem and the Schauder fixed-point theorem, and some examples are given to illustrate the main results.


Author(s):  
Heinrich Voss

SynopsisUsing a fixed point theorem on operators expanding a cone in a Banach space we prove the existence of positive solutions of superlinear boundary value problemsAt the same time we get bounds (or even inclusions) of positive solutions.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Hojjat Afshari ◽  
Mohammed S. Abdo ◽  
Jehad Alzabut

Abstract This paper studies two classes of boundary value problems within the generalized Caputo fractional operators. By applying the fixed point result of α-ϕ-Geraghty contractive type mappings, we derive new results on the existence and uniqueness of the proposed problems. Illustrative examples are constructed to demonstrate the advantage of our results. The theorems reported not only provide a new approach but also generalize existing results in the literature.


Sign in / Sign up

Export Citation Format

Share Document