scholarly journals East Asian monsoon during the past 10,000 years recorded by grain size of Yangtze River delta

2021 ◽  
Vol 13 (1) ◽  
pp. 505-516
Author(s):  
Xiaohui Wang ◽  
Longsheng Wang ◽  
Shouyun Hu ◽  
Ge Yu ◽  
Qing Wang ◽  
...  

Abstract Paleoenvironmental research is critical for understanding delta evolution processes and managing delta sustainability, particularly for delta experiencing significant recent fluvial sediment discharge. Based on other previously reported optically stimulated luminescence (OSL) data, Holocene environmental changes of the Yangtze River delta in response to climate fluctuations and human activities were reviewed on the basis of grain-size analyses of core YZ07. The results of grain-size and end-member analysis (EMA) provide a detailed history of East Asian monsoon variability and environmental changes since ∼10,000 cal year B.P. The lower median values (Md) and sand content reflect relatively cool and dry climate conditions between 10,000 and 9,570 cal year B.P. During the early Holocene (9,570–7,630 cal year B.P.), the highest Md values and sand contents and the lowest end member 2 (EM2) contents suggest the Holocene transgression. The increased Md values and sand contents indicate that the climate conditions were warm and wet during the mid-Holocene thermal optimum. From 4,690 to 4,150 cal year B.P., the climate was cool and dry, corresponding to the cool event, as indicated by the finer grain size. Subsequently, between 4,150 and 2,850 cal year B.P., the grain size derived from the Md value and sand content increased, which reflect a wet and warm episode. The climate, which shifted from warm and wet to cool and dry between 2,850 and 1,020 cal year B.P., may have caused a reduction in the sand contents and Md values. After 1,020 cal year B.P., the lowest values of Md and Standard deviation (Sd) and the highest contents of EM2 and clay suggest that the Yangtze River delta has been severely affected by anthropogenic activity. The variability of the East Asian monsoon intensity in the Yangtze River delta strongly correlates with other East Asian monsoon paleoclimate records in China. These results are important for investigations into the interactions between regional systems and global change in monsoonal climatic regions and can provide an example of the evolution of a large scale geomorphic feature resulting from river-sea interaction.

2020 ◽  
Vol 97 ◽  
pp. 199-215
Author(s):  
Chao Wu ◽  
Peng Qian ◽  
Xiangmin Zheng ◽  
Limin Zhou ◽  
Hui Wang ◽  
...  

AbstractThe sedimentologic fingerprinting in detrital deposit is vital to reconstruct sedimentary environments and discriminate sources. In this study, grain size and microtextural characteristics of quartz from the late Pleistocene hard clay in the Yangtze River delta (YRD) were analyzed by using a laser particle size analyzer and a scanning electron microscope. Subaqueous quartz from the Yangtze River and Yellow River sediments and eolian quartz from the Chinese Loess Plateau loess were also analyzed by scanning electron microscopy to obtain the microtextural characteristics. Quartz grains of the hard clay were characterized by poor sorting, fine skew, bimodal grain-size distributions, and numerous eolian microtextures. The comparison of the quartz grain characteristics of the hard clay with these in eolian loess indicated that the hard clay belonged to an eolian deposition. Moreover, the fine quartz grains of the hard clay were dominated by eolian microtextural characteristics, representing long-distance transportation. The coarse quartz grains of the hard clay exhibited more subaqueous microtextural characteristics, which indicated that the coarse fraction of the hard clay was derived from the proximal source regions in the YRD. The determination of buried eolian deposition with multiple sources in the YRD implies a southward westerly jet stream, strengthened eolian dust transportation, and extensive aridification in the YRD due to the increased Northern Hemisphere ice sheets in Marine Oxygen Isotope Stage 2.


Author(s):  
Shufeng She ◽  
Bifeng Hu ◽  
Xianglin Zhang ◽  
Shuai Shao ◽  
Yefeng Jiang ◽  
...  

Potentially toxic elements (PTEs) pollution in the agricultural soil of China, especially in developed regions such as the Yangtze River Delta (YRD) in eastern China, has received increasing attention. However, there are few studies on the long-term assessment of soil pollution by PTEs over large regions. Therefore, in this study, a meta-analysis was conducted to evaluate the current state and temporal trend of PTEs pollution in the agricultural land of the Yangtze River Delta. Based on a review of 118 studies published between 1993 and 2020, the average concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni were found to be 0.25 mg kg−1, 0.14 mg kg−1, 8.14 mg kg−1, 32.32 mg kg−1, 68.84 mg kg−1, 32.58 mg kg−1, 92.35 mg kg−1, and 29.30 mg kg−1, respectively. Among these elements, only Cd and Hg showed significant accumulation compared with their background values. The eastern Yangtze River Delta showed a relatively high ecological risk due to intensive industrial activities. The contents of Cd, Pb, and Zn in soil showed an increasing trend from 1993 to 2000 and then showed a decreasing trend. The results obtained from this study will provide guidance for the prevention and control of soil pollution in the Yangtze River Delta.


Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 804
Author(s):  
Bo Niu ◽  
Dazhuan Ge ◽  
Rui Yan ◽  
Yingyi Ma ◽  
Dongqi Sun ◽  
...  

In recent years, the impact of land-use systems on global climate change has become increasingly significant, and land-use change has become a hot issue of concern to academics, both within China and abroad. Urbanization, as an important socioeconomic factor, plays a vital role in promoting land-use transition, which also shows a significant spatial dependence on urbanization. This paper constructs a theoretical framework for the interaction relationship between urbanization and land-use transition, taking the Yangtze River Delta as an example, and measures the level of urbanization from the perspective of population urbanization, economic urbanization and social urbanization, while also evaluating the level of land-use morphologies from the perspective of dominant and recessive morphologies of land-use. We construct a PVAR model and coupled coordination model based on the calculated indexes for empirical analysis. The results show that the relationship between urbanization and land-use transition is not a simple linear relationship, but tends to be complex with the process of urbanization, and reasonable urbanization and land-use morphologies will promote further benign coupling in the system. By analyzing the interaction relationship between urbanization and land-use transition, this study enriches the study of land-use change and provides new pathways for thinking about how to promote high-quality urbanization.


Sign in / Sign up

Export Citation Format

Share Document