Boundary Problems of Thermopiezoelectricity in Domains with Cuspidal Edges

2000 ◽  
Vol 7 (3) ◽  
pp. 441-460 ◽  
Author(s):  
T. Buchukuri ◽  
O. Chkadua

Abstract Dirichlet- and Neumann-type boundary value problems of statics are considered in three-dimensional domains with cuspidal edges filled with a homogeneous anisotropic medium. Using the method of the theory of a potential and the theory of pseudodifferential equations on manifolds with boundary, we prove the existence and uniqueness theorems in Besov and Bessel-potential spaces, and study the smoothness and a complete asymptotics of solutions near the cuspidal edges.

2017 ◽  
Vol 27 (05) ◽  
pp. 807-843 ◽  
Author(s):  
Gregory A. Chechkin ◽  
Tudor S. Ratiu ◽  
Maxim S. Romanov ◽  
Vyacheslav N. Samokhin

In this paper, we study the three-dimensional Ericksen–Leslie equations for the nematodynamics of liquid crystals. We prove short time existence and uniqueness of strong solutions for the initial value problem for the periodic case and in bounded domains with both Dirichlet- and Neumann-type boundary conditions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Roland Duduchava

AbstractThe purpose of the present research is to investigate a general mixed type boundary value problem for the Laplace–Beltrami equation on a surface with the Lipschitz boundary 𝒞 in the non-classical setting when solutions are sought in the Bessel potential spaces \mathbb{H}^{s}_{p}(\mathcal{C}), \frac{1}{p}<s<1+\frac{1}{p}, 1<p<\infty. Fredholm criteria and unique solvability criteria are found. By the localization, the problem is reduced to the investigation of model Dirichlet, Neumann and mixed boundary value problems for the Laplace equation in a planar angular domain \Omega_{\alpha}\subset\mathbb{R}^{2} of magnitude 𝛼. The model mixed BVP is investigated in the earlier paper [R. Duduchava and M. Tsaava, Mixed boundary value problems for the Helmholtz equation in a model 2D angular domain, Georgian Math. J.27 (2020), 2, 211–231], and the model Dirichlet and Neumann boundary value problems are studied in the non-classical setting. The problems are investigated by the potential method and reduction to locally equivalent 2\times 2 systems of Mellin convolution equations with meromorphic kernels on the semi-infinite axes \mathbb{R}^{+} in the Bessel potential spaces. Such equations were recently studied by R. Duduchava [Mellin convolution operators in Bessel potential spaces with admissible meromorphic kernels, Mem. Differ. Equ. Math. Phys.60 (2013), 135–177] and V. Didenko and R. Duduchava [Mellin convolution operators in Bessel potential spaces, J. Math. Anal. Appl.443 (2016), 2, 707–731].


1995 ◽  
Vol 2 (2) ◽  
pp. 111-123
Author(s):  
O. Chkadua

Abstract The existence and uniqueness of solutions of the boundary-contact problem of elasticity for homogeneous anisotropic media with a contact on some part of their boundaries are investigated in the Besov and Bessel potential classes using the methods of the potential theory and the theory of pseudodifferential equations on manifolds with boundary. The smoothness of the solutions obtained is studied.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1463
Author(s):  
Daniel Ševčovič ◽  
Cyril Izuchukwu Udeani

The purpose of this paper is to analyze solutions of a non-local nonlinear partial integro-differential equation (PIDE) in multidimensional spaces. Such class of PIDE often arises in financial modeling. We employ the theory of abstract semilinear parabolic equations in order to prove existence and uniqueness of solutions in the scale of Bessel potential spaces. We consider a wide class of Lévy measures satisfying suitable growth conditions near the origin and infinity. The novelty of the paper is the generalization of already known results in the one space dimension to the multidimensional case. We consider Black–Scholes models for option pricing on underlying assets following a Lévy stochastic process with jumps. As an application to option pricing in the one-dimensional space, we consider a general shift function arising from a nonlinear option pricing model taking into account a large trader stock-trading strategy. We prove existence and uniqueness of a solution to the nonlinear PIDE in which the shift function may depend on a prescribed large investor stock-trading strategy function.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2020
Author(s):  
Batirkhan Turmetov ◽  
Valery Karachik ◽  
Moldir Muratbekova

A nonlocal analogue of the biharmonic operator with involution-type transformations was considered. For the corresponding biharmonic equation with involution, we investigated the solvability of boundary value problems with a fractional-order boundary operator having a derivative of the Hadamard-type. First, transformations of the involution type were considered. The properties of the matrices of these transformations were investigated. As applications of the considered transformations, the questions about the solvability of a boundary value problem for a nonlocal biharmonic equation were studied. Modified Hadamard derivatives were considered as the boundary operator. The considered problems covered the Dirichlet and Neumann-type boundary conditions. Theorems on the existence and uniqueness of solutions to the studied problems were proven.


2016 ◽  
Vol 23 (4) ◽  
pp. 489-510
Author(s):  
George Chkadua

AbstractIn the paper we consider three-dimensional Riquier-type and classical mixed boundary value problems for the polymetaharmonic equation ${(\Delta+k^{2}_{1})(\Delta+k^{2}_{2})u=0}$. We investigate these problems by means of the potential method and the theory of pseudodifferential equations. We prove the existence and uniqueness theorems in Sobolev–Slobodetskii spaces, analyse the asymptotic properties of solutions and establish the best Hölder smoothness results for solutions.


2021 ◽  
Vol 18 (5) ◽  
Author(s):  
Francesco Aldo Costabile ◽  
Maria Italia Gualtieri ◽  
Anna Napoli

AbstractGeneral nonlinear high odd-order differential equations with Lidstone–Euler boundary conditions of second type are treated both theoretically and computationally. First, the associated interpolation problem is considered. Then, a theorem of existence and uniqueness of the solution to the Lidstone–Euler second-type boundary value problem is given. Finally, for a numerical solution, two different approaches are illustrated and some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.


2020 ◽  
Vol 54 (4) ◽  
pp. 1373-1413 ◽  
Author(s):  
Huaiqian You ◽  
XinYang Lu ◽  
Nathaniel Task ◽  
Yue Yu

In this paper we consider 2D nonlocal diffusion models with a finite nonlocal horizon parameter δ characterizing the range of nonlocal interactions, and consider the treatment of Neumann-like boundary conditions that have proven challenging for discretizations of nonlocal models. We propose a new generalization of classical local Neumann conditions by converting the local flux to a correction term in the nonlocal model, which provides an estimate for the nonlocal interactions of each point with points outside the domain. While existing 2D nonlocal flux boundary conditions have been shown to exhibit at most first order convergence to the local counter part as δ → 0, the proposed Neumann-type boundary formulation recovers the local case as O(δ2) in the L∞ (Ω) norm, which is optimal considering the O(δ2) convergence of the nonlocal equation to its local limit away from the boundary. We analyze the application of this new boundary treatment to the nonlocal diffusion problem, and present conditions under which the solution of the nonlocal boundary value problem converges to the solution of the corresponding local Neumann problem as the horizon is reduced. To demonstrate the applicability of this nonlocal flux boundary condition to more complicated scenarios, we extend the approach to less regular domains, numerically verifying that we preserve second-order convergence for non-convex domains with corners. Based on the new formulation for nonlocal boundary condition, we develop an asymptotically compatible meshfree discretization, obtaining a solution to the nonlocal diffusion equation with mixed boundary conditions that converges with O(δ2) convergence.


2019 ◽  
Vol 968 ◽  
pp. 496-510
Author(s):  
Anatoly Grigorievich Zelensky

Classical and non-classical refined theories of plates and shells, based on various hypotheses [1-7], for a wide class of boundary problems, can not describe with sufficient accuracy the SSS of plates and shells. These are boundary problems in which the plates and shells undergo local and burst loads, have openings, sharp changes in mechanical and geometric parameters (MGP). The problem also applies to such elements of constructions that have a considerable thickness or large gradient of SSS variations. The above theories in such cases yield results that can differ significantly from those obtained in a three-dimensional formulation. According to the logic in such theories, the accuracy of solving boundary problems is limited by accepted hypotheses and it is impossible to improve the accuracy in principle. SSS components are usually depicted in the form of a small number of members. The systems of differential equations (DE) obtained here have basically a low order. On the other hand, the solution of boundary value problems for non-thin elastic plates and shells in a three-dimensional formulation [8] is associated with great mathematical difficulties. Only in limited cases, the three-dimensional problem of the theory of elasticity for plates and shells provides an opportunity to find an analytical solution. The complexity of the solution in the exact three-dimensional formulation is greatly enhanced if complex boundary conditions or physically nonlinear problems are considered. Theories in which hypotheses are not used, and SSS components are depicted in the form of infinite series in transverse coordinates, will be called mathematical. The approximation of the SSS component can be adopted in the form of various lines [9-16], and the construction of a three-dimensional problem to two-dimensional can be accomplished by various methods: projective [9, 14, 16], variational [12, 13, 15, 17]. The effectiveness and accuracy of one or another variant of mathematical theory (MT) depends on the complex methodology for obtaining the basic equations.


Sign in / Sign up

Export Citation Format

Share Document