The impact of ionic strength on the molecular weight distribution (MWD) of lignin dissolved during softwood kraft cooking in a flow-through reactor

Holzforschung ◽  
2016 ◽  
Vol 70 (6) ◽  
pp. 495-501 ◽  
Author(s):  
Binh T.T. Dang ◽  
Harald Brelid ◽  
Hans Theliander

Abstract The molecular weight distribution (MWD) of dissolved lignin as a function of time during kraft cooking of Scots pine (Pinus silvestris L) has been investigated, while the influence of sodium ion concentration ([Na+]) on the MWD was in focus. The kraft cooking was performed in a small scale flow-through reactor and the [Na+] was controlled by the addition of either Na2CO3 or NaCl. Fractions of black liquors (BL) were collected at different cooking times and the lignin was separated from the BL by acidification. The MWD of the dissolved lignin was analyzed by GPC. Results show that the weight average molecular weight (Mw) of dissolved lignin increases gradually as function of cooking time. An increase of [Na+] in the cooking liquor leads to Mw decrement. Findings from cooks with constant and varying [Na+] imply that the retarding effect of an increased [Na+] on delignification is related to the decrease in lignin solubility at higher [Na+].

2013 ◽  
Vol 850-851 ◽  
pp. 70-73
Author(s):  
Hua Wang ◽  
Hao Dong Song ◽  
En Guang Zou ◽  
Teng Jie Ge ◽  
Hong Fang

The performance of JHMGC100S, a kind of HDPE for pipe, was studied, and the comparison with other typical PE100 resin in China and abroad was also did. The results show that: the impact strength of JHMGC100S was higher than other samples, and the bending strength was almost the same; the molecular weight distribution was obvious bimodal; the processability of JHMGC100S was good, and the hydrostatic strength of the pipe which was produced by JHMGC100S fulfilled the rule in GB/T 15558.1-2003.


Sign in / Sign up

Export Citation Format

Share Document