Direct measurement of strain distribution along a wood bond line. Part 1: Shear strain concentration in a lap joint specimen by means of electronic speckle pattern interferometry

Holzforschung ◽  
2005 ◽  
Vol 59 (3) ◽  
pp. 300-306 ◽  
Author(s):  
Ulrich Müller ◽  
Aleksandra Sretenovic ◽  
Angela Vincenti ◽  
Wolfgang Gindl

Abstract Phenol-resorcinol-formaldehyde (PRF) and one-component polyurethane (PUR) resins were used to manufacture single lap joint samples corresponding to EN 302-1. 3D electronic speckle pattern interferometry (ESPI), which enables measurement of spatial displacement of less than 0.1 μm, was used during tensile shear experiments to observe full-field in-plane and out-of-plane deformation of the lap joint samples and to detect strain concentrations in the vicinity of glue lines. Finite element analysis was performed to validate ESPI measurements. In general, ESPI measurements showed that in a lap joint experiment a very small volume of material close to the ends of the overlapping area is highly strained. ESPI and finite element analysis pointed out that PUR glue lines are characterised by much higher shear deformations than PRF glue lines, especially at the ends of the overlapping area. However, due to the lower Young's modulus of PUR resin compared to PRF, higher shear strains but lower shear stress concentrations can be expected in PUR, which was confirmed by the FE model.

Author(s):  
Robert X. Wang ◽  
Graham M. Chapman

Abstract This paper reports on the application of Electronic Speckle Pattern Interferometry (ESPI) technique in vibration measurement of turbine blading. Using the time-averaged mode of ESPI, the first six modes of a turbocharger blade with airfoil profile were identified. The effect of the complicated profile of the blade was established by studying simplified model blades. Coupled modes were identified and successfully separated. Experimental results are compared with those obtained using finite element analysis.


2013 ◽  
Vol 284-287 ◽  
pp. 1831-1835
Author(s):  
Wei Hsin Gau ◽  
Kun Nan Chen ◽  
Yunn Lin Hwang

In this paper, two experimental techniques, Electronic Speckle Pattern Interferometry and Stroboscopic Interferometry, and two different finite element analysis packages are used to measure or to analyze the frequencies and mode shapes of a micromachined, cross-shaped torsion structure. Four sets of modal data are compared and shown having a significant discrepancy in their frequency values, although their mode shapes are quite consistent. Inconsistency in the frequency results due to erroneous inputs of geometrical and material parameters to the finite element analysis can be salvaged by applying the finite element model updating procedure. Two updating cases show that the optimization sequences converge quickly and significant improvements in frequency prediction are achieved. With the inclusion of the thickness parameter, the second case yields a maximum of under 0.4% in frequency difference, and all parameters attain more reliable updated values.


Author(s):  
Constantine M. Tarawneh ◽  
Arturo A. Fuentes ◽  
Javier A. Kypuros ◽  
Lariza A. Navarro ◽  
Andrei G. Vaipan ◽  
...  

In the railroad industry, distressed bearings in service are primarily identified using wayside hot-box detectors (HBDs). Current technology has expanded the role of these detectors to monitor bearings that appear to “warm trend” relative to the average temperatures of the remainder of bearings on the train. Several bearings set-out for trending and classified as nonverified, meaning no discernible damage, revealed that a common feature was discoloration of rollers within a cone (inner race) assembly. Subsequent laboratory experiments were performed to determine a minimum temperature and environment necessary to reproduce these discolorations and concluded that the discoloration is most likely due to roller temperatures greater than 232 °C (450 °F) for periods of at least 4 h. The latter finding sparked several discussions and speculations in the railroad industry as to whether it is possible to have rollers reaching such elevated temperatures without heating the bearing cup (outer race) to a temperature significant enough to trigger the HBDs. With this motivation, and based on previous experimental and analytical work, a thermal finite element analysis (FEA) of a railroad bearing pressed onto an axle was conducted using ALGOR 20.3™. The finite element (FE) model was used to simulate different heating scenarios with the purpose of obtaining the temperatures of internal components of the bearing assembly, as well as the heat generation rates and the bearing cup surface temperature. The results showed that, even though some rollers can reach unsafe operating temperatures, the bearing cup surface temperature does not exhibit levels that would trigger HBD alarms.


Author(s):  
R. N. Margasahayam ◽  
H. S. Faust

Abstract A finite-element stress analysis of a one-piece, integrated, all-composite shaft and coupling is presented. In addition to a brief discussion of design-driving parameters, some limitations of the analytical techniques used for design development are described. The 3D finite-element method (FEM) was then used to evaluate critical stresses and strains experienced by the shaft coupling. A comparison of the results from the finite-element analysis and those from static bending, axial, and torsional tests conducted on these prototype shafts yielded excellent correlation. Some important considerations in the development of the FE model and the correlation of results with tests, especially in the design of composite materials, are addressed.


1981 ◽  
Vol 18 (01) ◽  
pp. 51-68
Author(s):  
Donald Liu ◽  
Abram Bakker

Local structural problems in ships are generally the result of stress concentrations in structural details. The intent of this paper is to show that costly repairs and lay-up time of a vessel can often be prevented, if these problem areas are recognized and investigated in the design stages. Such investigations can be performed for minimal labor and computer costs by using finite-element analysis techniques. Practical procedures for analyzing structural details are presented, including discussions of the results and the analysis costs expended. It is shown that the application of the finite-element analysis technique can be economically employed in the investigation of structural details.


Author(s):  
Mikkel L. Larsen ◽  
Vikas Arora ◽  
Marie Lützen ◽  
Ronnie R. Pedersen ◽  
Eric Putnam

Abstract Several methods for modelling and finite element analysis of tubular welded joints are described in various design codes. These codes provide specific recommendations for modelling of the welded joints, using simple weld geometries. In this paper, experimental hot-spot strain range results from a full-scale automatically welded K-node test are compared to corresponding finite element models. As part of investigating the automatically welded K-joint, 3D scans of the weld surfaces have been made. These scans are included in the FE models to determine the accuracy of the FE models. The results are compared to an FE model with a simple weld geometry based on common offshore design codes and a model without any modelled weld. The results show that the FE model with 3D scanned welds is more accurate than the two simple FE models. As the weld toe location of the 3D scanned weld is difficult to locate precisely in the FE model and as misplacement of strain gauges are possible, stochastic finite element modelling is performed to analyse the resulting probabilistic hot-spot stresses. The results show large standard deviations, showing the necessity to evaluate the hot-spot stress method when using 3D scanned welds.


2014 ◽  
Vol 49 (9) ◽  
pp. 1057-1069 ◽  
Author(s):  
Baris Sabuncuoglu ◽  
Svetlana Orlova ◽  
Larissa Gorbatikh ◽  
Stepan V Lomov ◽  
Ignaas Verpoest

Sign in / Sign up

Export Citation Format

Share Document