Thermal Modeling of a Railroad Tapered-Roller Bearing Using Finite Element Analysis

Author(s):  
Constantine M. Tarawneh ◽  
Arturo A. Fuentes ◽  
Javier A. Kypuros ◽  
Lariza A. Navarro ◽  
Andrei G. Vaipan ◽  
...  

In the railroad industry, distressed bearings in service are primarily identified using wayside hot-box detectors (HBDs). Current technology has expanded the role of these detectors to monitor bearings that appear to “warm trend” relative to the average temperatures of the remainder of bearings on the train. Several bearings set-out for trending and classified as nonverified, meaning no discernible damage, revealed that a common feature was discoloration of rollers within a cone (inner race) assembly. Subsequent laboratory experiments were performed to determine a minimum temperature and environment necessary to reproduce these discolorations and concluded that the discoloration is most likely due to roller temperatures greater than 232 °C (450 °F) for periods of at least 4 h. The latter finding sparked several discussions and speculations in the railroad industry as to whether it is possible to have rollers reaching such elevated temperatures without heating the bearing cup (outer race) to a temperature significant enough to trigger the HBDs. With this motivation, and based on previous experimental and analytical work, a thermal finite element analysis (FEA) of a railroad bearing pressed onto an axle was conducted using ALGOR 20.3™. The finite element (FE) model was used to simulate different heating scenarios with the purpose of obtaining the temperatures of internal components of the bearing assembly, as well as the heat generation rates and the bearing cup surface temperature. The results showed that, even though some rollers can reach unsafe operating temperatures, the bearing cup surface temperature does not exhibit levels that would trigger HBD alarms.

Author(s):  
Parbant Singh ◽  
S.P. Harsha

Freight trains run under high service loads during consignment loading and operation so tapered roller bearings are ideally suited to wheel bearing applications. The tapered roller bearings used in the railway industry are of a standard design fixed by the American Association of Railroads regulations. Nowadays rail industry improves the train operating speeds, which means that failure of a bearing will result into a derailment, affecting human lives, network disruption, and damage to the railroad, unplanned maintenance costs, and generating fear in general public about rail transport. So the rail industry has focused on the improvement in maintenance work and improvement in component design. This paper discusses the results of finite element analysis and model analysis of Cartridge Tapered Roller bearing (CTRB). Solid modelling of CTRB has been done using solid works. The CTRB is then discretized using ANSYS software and 3D hexahedral solid elements are used to mesh the components. The effect of vibration modes on the dynamic behaviour and stability of wagon is described. Frequencies up to a range of 100 Hz are considered for mode shapes.


Author(s):  
R. N. Margasahayam ◽  
H. S. Faust

Abstract A finite-element stress analysis of a one-piece, integrated, all-composite shaft and coupling is presented. In addition to a brief discussion of design-driving parameters, some limitations of the analytical techniques used for design development are described. The 3D finite-element method (FEM) was then used to evaluate critical stresses and strains experienced by the shaft coupling. A comparison of the results from the finite-element analysis and those from static bending, axial, and torsional tests conducted on these prototype shafts yielded excellent correlation. Some important considerations in the development of the FE model and the correlation of results with tests, especially in the design of composite materials, are addressed.


Author(s):  
Mikkel L. Larsen ◽  
Vikas Arora ◽  
Marie Lützen ◽  
Ronnie R. Pedersen ◽  
Eric Putnam

Abstract Several methods for modelling and finite element analysis of tubular welded joints are described in various design codes. These codes provide specific recommendations for modelling of the welded joints, using simple weld geometries. In this paper, experimental hot-spot strain range results from a full-scale automatically welded K-node test are compared to corresponding finite element models. As part of investigating the automatically welded K-joint, 3D scans of the weld surfaces have been made. These scans are included in the FE models to determine the accuracy of the FE models. The results are compared to an FE model with a simple weld geometry based on common offshore design codes and a model without any modelled weld. The results show that the FE model with 3D scanned welds is more accurate than the two simple FE models. As the weld toe location of the 3D scanned weld is difficult to locate precisely in the FE model and as misplacement of strain gauges are possible, stochastic finite element modelling is performed to analyse the resulting probabilistic hot-spot stresses. The results show large standard deviations, showing the necessity to evaluate the hot-spot stress method when using 3D scanned welds.


2011 ◽  
Vol 143-144 ◽  
pp. 437-442
Author(s):  
Bao Hong Tong ◽  
Yin Liu ◽  
Xiao Qian Sun ◽  
Xin Ming Cheng

A dynamic finite element analysis model for cylindrical roller bearing is developed, and the complex stress distribution and dynamic contacting nature of the bearing are investigated carefully based on ANSYS/LS-DYNA. Numerical simulation results show that the stress would be bigger when the element contacting with the inner or outer ring than at other times, and the biggest stress would appear near the area that roller contacting with the inner ring. Phenomenon of stress concentration on the roller is found to be very obvious during the operating process of the bearing system. The stress distributions of different elements are uneven on the same side surface of roller in its axis direction. Numerical simulation results can give useful references for the design and analysis of rolling bearing.


Author(s):  
Phong Phan ◽  
Anh Vo ◽  
Amirhamed Bakhtiarydavijani ◽  
Reuben Burch ◽  
Brian K. Smith ◽  
...  

Abstract Computational approaches, especially Finite Element Analysis (FEA), have been rapidly growing in both academia and industry during the last few decades. FEA serves as a powerful and efficient approach for simulating real-life experiments, including industrial product development, machine design, and biomedical research, particularly in biomechanics and biomaterials. Accordingly, FEA has been a "go-to" high biofidelic software tool to simulate and quantify the biomechanics of the foot-ankle complex, as well as to predict the risk of foot and ankle injuries, which are one of the most common musculoskeletal injuries among physically active individuals. This paper provides a review of the in silico FEA of the foot-ankle complex. First, a brief history of computational modeling methods and Finite Element (FE) simulations for foot-ankle models is introduced. Second, a general approach to build a FE foot and ankle model is presented, including a detailed procedure to accurately construct, calibrate, verify, and validate a FE model in its appropriate simulation environment. Third, current applications, as well as future improvements of the foot and ankle FE models, especially in the biomedical field, are discussed. Lastly, a conclusion is made on the efficiency and development of FEA as a computational approach in investigating the biomechanics of the foot-ankle complex. Overall, this review integrates insightful information for biomedical engineers, medical professionals, and researchers to conduct more accurate research on the foot-ankle FE models in the future.


2012 ◽  
Vol 215-216 ◽  
pp. 847-850
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Hong Jie Wang

In the condition of alternating impact ,the nut-supports subassembly is analyzed according to uncertainty of design parameters. Firstly, a three-dimensional (3-D) finite element (FE) model of the nut-supports subassembly is built and is meshed,and the constraints and loads are imposed.Secondly,the model of nut-supports was assembled using the software ANSYS to understand the stress distribution and various parts of the deformation of the nut-supports and its weak links in the harmonic forces.Finally,socket head cap screw has not enough pre-load in the condition of alternating impact and will be simplified.It is analyzed and checked whether it is cut or not; which provides the reference data for design and optimization of the wave maker.


Author(s):  
Shunji Kataoka ◽  
Takuya Sato

Creep-fatigue damage is one of the dominant failure modes for pressure vessels and piping used at elevated temperatures. In the design of these components the inelastic behavior should be estimated accurately. An inelastic finite element analysis is sometimes employed to predict the creep behavior. However, this analysis needs complicated procedures and many data that depend on the material. Therefore the design is often based on a simplified inelastic analysis based on the elastic analysis result, as described in current design codes. A new, simplified method, named, Stress Redistribution Locus (SRL) method, was proposed in order to simplify the analysis procedure and obtain reasonable results. This method utilizes a unique estimation curve in a normalized stress-strain diagram which can be drawn regardless of the magnitude of thermal loading and constitutive equations of the materials. However, the mechanism of SRL has not been fully investigated. This paper presents results of the parametric inelastic finite element analyses performed in order to investigate the mechanism of SRL around a structural discontinuity, like a shell-skirt intersection, subjected to combined secondary bending stress and peak stress. This investigation showed that SRL comprises a redistribution of the peak and secondary stress components and that although these two components exhibit independent redistribution behavior, they are related to each other.


Ceramics ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 210-222 ◽  
Author(s):  
Guenter Unterreiter ◽  
Daniel R. Kreuzer ◽  
Bernd Lorenzoni ◽  
Hans U. Marschall ◽  
Christoph Wagner ◽  
...  

Creep behavior is very important for the selection of refractory materials. This paper presents a methodology to measure the compressive creep behavior of fired magnesia materials at elevated temperatures. The measurements were carried out at 1150–1500 °C and under compression loads from 1–8 MPa. Creep strain was calculated from the measured total strain data. The obtained creep deformations of the experimental investigations were subjected to detailed analysis to identify the Norton-Bailey creep law parameters. The modulus of elasticity was determined in advance to simplify the inverse estimation process for finding the Norton-Bailey creep parameters. In the next step; an extended material model including creep was used in a finite element analysis (FEA) and the creep testing procedure was reproduced numerically. Within the investigated temperature and load range; the creep deformations calculated by FEA demonstrated a good agreement with the results of the experimental investigations. Finally; a finite element unit cell model of a quarter brick representing a section of the lining of a ferrochrome (FeCr) electric arc furnace (direct current) was used to assess the thermo-mechanical stresses and strains including creep during a heat-up procedure. The implementation of the creep behavior into the design process led to an improved prediction of strains and stresses.


Sign in / Sign up

Export Citation Format

Share Document