In-situ Observation of Structural Evolution of Zr60Al15Ni25 Bulk Metallic Glass in the Supercooled Liquid Region

2000 ◽  
Vol 19 (5) ◽  
pp. 299-306 ◽  
Author(s):  
S. Sato, ◽  
E. Matsubara, ◽  
S. Tanaka, ◽  
M. Kimura, ◽  
M. Imafuku, ◽  
...  
2007 ◽  
Vol 551-552 ◽  
pp. 561-567
Author(s):  
K.C. Chan ◽  
Q. Chen ◽  
L. Liu

The compressive deformation behavior of as-cast Zr55.9Cu18.6Ta8Al7.5Ni10 Bulk Metallic Glass (BMG) composite with micro-scale particles of Ta-rich solid solution embedded in an amorphous matrix was investigated in the supercooled liquid region. It was found that the apparent viscosity of the BMG is dependent on temperature and strain rate. A deviation from a Newtonian behavior was observed at high strain rate and low temperature. The experimental results can be described by a master curve based on a stretched exponential function and the free volume theory. The structural state and the thermal ability of the BMG composite after deformation are also discussed in the paper.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 579
Author(s):  
Ting Shi ◽  
Lanping Huang ◽  
Song Li

Structural relaxation and nanomechanical behaviors of La65Al14Ni5Co5Cu9.2Ag1.8 bulk metallic glass (BMG) with a low glass transition temperature during annealing have been investigated by calorimetry and nanoindentation measurement. The enthalpy release of this metallic glass is deduced by annealing near glass transition. When annealed below glass transition temperature for 5 min, the recovered enthalpy increases with annealing temperature and reaches the maximum value at 403 K. After annealed in supercooled liquid region, the recovered enthalpy obviously decreases. For a given annealing at 393 K, the relaxation behaviors of La-based BMG can be well described by the Kohlrausch-Williams-Watts (KWW) function. The hardness, Young’s modulus, and serrated flow are sensitive to structural relaxation of this metallic glass, which can be well explained by the theory of solid-like region and liquid-like region. The decrease of ductility and the enhancement of homogeneity can be ascribed to the transformation from liquid-like region into solid-like region and the reduction of the shear transition zone (STZ).


2007 ◽  
Vol 22 (7) ◽  
pp. 1849-1858 ◽  
Author(s):  
Kwang Seok Lee ◽  
Jürgen Eckert ◽  
Hyun-Joon Jun ◽  
Young Won Chang

The influence of annealing on the structural changes and the mechanical properties of Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit-1) bulk metallic glass was systematically studied by varying the annealing times at 703 K. The evolution of the structural state at a relatively high temperature within the supercooled liquid region was studied by thermal analysis, x-ray diffraction, high-resolution transmission electron microscopy, extended x-ray absorption fine structure, and dilatometric measurements. The deformation behavior and the mechanical properties were also examined by carrying out hardness and compression tests for the specimens annealed for various times.


Sign in / Sign up

Export Citation Format

Share Document