scholarly journals Big Data, Small Sample

2017 ◽  
Vol 13 (1) ◽  
Author(s):  
Inna Gerlovina ◽  
Mark J. van der Laan ◽  
Alan Hubbard

AbstractMultiple comparisons and small sample size, common characteristics of many types of “Big Data” including those that are produced by genomic studies, present specific challenges that affect reliability of inference. Use of multiple testing procedures necessitates calculation of very small tail probabilities of a test statistic distribution. Results based on large deviation theory provide a formal condition that is necessary to guarantee error rate control given practical sample sizes, linking the number of tests and the sample size; this condition, however, is rarely satisfied. Using methods that are based on Edgeworth expansions (relying especially on the work of Peter Hall), we explore the impact of departures of sampling distributions from typical assumptions on actual error rates. Our investigation illustrates how far the actual error rates can be from the declared nominal levels, suggesting potentially wide-spread problems with error rate control, specifically excessive false positives. This is an important factor that contributes to “reproducibility crisis”. We also review some other commonly used methods (such as permutation and methods based on finite sampling inequalities) in their application to multiple testing/small sample data. We point out that Edgeworth expansions, providing higher order approximations to the sampling distribution, offer a promising direction for data analysis that could improve reliability of studies relying on large numbers of comparisons with modest sample sizes.

1986 ◽  
Vol 20 (2) ◽  
pp. 189-200 ◽  
Author(s):  
Kevin D. Bird ◽  
Wayne Hall

Statistical power is neglected in much psychiatric research, with the consequence that many studies do not provide a reasonable chance of detecting differences between groups if they exist in the population. This paper attempts to improve current practice by providing an introduction to the essential quantities required for performing a power analysis (sample size, effect size, type 1 and type 2 error rates). We provide simplified tables for estimating the sample size required to detect a specified size of effect with a type 1 error rate of α and a type 2 error rate of β, and for estimating the power provided by a given sample size for detecting a specified size of effect with a type 1 error rate of α. We show how to modify these tables to perform power analyses for multiple comparisons in univariate and some multivariate designs. Power analyses for each of these types of design are illustrated by examples.


2020 ◽  
Vol 17 (6) ◽  
pp. 2062-2073 ◽  
Author(s):  
Zengyou He ◽  
Can Zhao ◽  
Hao Liang ◽  
Bo Xu ◽  
Quan Zou

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Dongmei Li ◽  
Timothy D. Dye

Resampling-based multiple testing procedures are widely used in genomic studies to identify differentially expressed genes and to conduct genome-wide association studies. However, the power and stability properties of these popular resampling-based multiple testing procedures have not been extensively evaluated. Our study focuses on investigating the power and stability of seven resampling-based multiple testing procedures frequently used in high-throughput data analysis for small sample size data through simulations and gene oncology examples. The bootstrap single-step minPprocedure and the bootstrap step-down minPprocedure perform the best among all tested procedures, when sample size is as small as 3 in each group and either familywise error rate or false discovery rate control is desired. When sample size increases to 12 and false discovery rate control is desired, the permutation maxTprocedure and the permutation minPprocedure perform best. Our results provide guidance for high-throughput data analysis when sample size is small.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Keisuke Ejima ◽  
Andrew Brown ◽  
Daniel Smith ◽  
Ufuk Beyaztas ◽  
David Allison

Abstract Objectives Rigor, reproducibility and transparency (RRT) awareness has expanded over the last decade. Although RRT can be improved from various aspects, we focused on type I error rates and power of commonly used statistical analyses testing mean differences of two groups, using small (n ≤ 5) to moderate sample sizes. Methods We compared data from five distinct, homozygous, monogenic, murine models of obesity with non-mutant controls of both sexes. Baseline weight (7–11 weeks old) was the outcome. To examine whether type I error rate could be affected by choice of statistical tests, we adjusted the empirical distributions of weights to ensure the null hypothesis (i.e., no mean difference) in two ways: Case 1) center both weight distributions on the same mean weight; Case 2) combine data from control and mutant groups into one distribution. From these cases, 3 to 20 mice were resampled to create a ‘plasmode’ dataset. We performed five common tests (Student's t-test, Welch's t-test, Wilcoxon test, permutation test and bootstrap test) on the plasmodes and computed type I error rates. Power was assessed using plasmodes, where the distribution of the control group was shifted by adding a constant value as in Case 1, but to realize nominal effect sizes. Results Type I error rates were unreasonably higher than the nominal significance level (type I error rate inflation) for Student's t-test, Welch's t-test and permutation especially when sample size was small for Case 1, whereas inflation was observed only for permutation for Case 2. Deflation was noted for bootstrap with small sample. Increasing sample size mitigated inflation and deflation, except for Wilcoxon in Case 1 because heterogeneity of weight distributions between groups violated assumptions for the purposes of testing mean differences. For power, a departure from the reference value was observed with small samples. Compared with the other tests, bootstrap was underpowered with small samples as a tradeoff for maintaining type I error rates. Conclusions With small samples (n ≤ 5), bootstrap avoided type I error rate inflation, but often at the cost of lower power. To avoid type I error rate inflation for other tests, sample size should be increased. Wilcoxon should be avoided because of heterogeneity of weight distributions between mutant and control mice. Funding Sources This study was supported in part by NIH and Japan Society for Promotion of Science (JSPS) KAKENHI grant.


2004 ◽  
Vol 3 (1) ◽  
pp. 1-69 ◽  
Author(s):  
Sandrine Dudoit ◽  
Mark J. van der Laan ◽  
Katherine S. Pollard

The present article proposes general single-step multiple testing procedures for controlling Type I error rates defined as arbitrary parameters of the distribution of the number of Type I errors, such as the generalized family-wise error rate. A key feature of our approach is the test statistics null distribution (rather than data generating null distribution) used to derive cut-offs (i.e., rejection regions) for these test statistics and the resulting adjusted p-values. For general null hypotheses, corresponding to submodels for the data generating distribution, we identify an asymptotic domination condition for a null distribution under which single-step common-quantile and common-cut-off procedures asymptotically control the Type I error rate, for arbitrary data generating distributions, without the need for conditions such as subset pivotality. Inspired by this general characterization of a null distribution, we then propose as an explicit null distribution the asymptotic distribution of the vector of null value shifted and scaled test statistics. In the special case of family-wise error rate (FWER) control, our method yields the single-step minP and maxT procedures, based on minima of unadjusted p-values and maxima of test statistics, respectively, with the important distinction in the choice of null distribution. Single-step procedures based on consistent estimators of the null distribution are shown to also provide asymptotic control of the Type I error rate. A general bootstrap algorithm is supplied to conveniently obtain consistent estimators of the null distribution. The special cases of t- and F-statistics are discussed in detail. The companion articles focus on step-down multiple testing procedures for control of the FWER (van der Laan et al., 2004b) and on augmentations of FWER-controlling methods to control error rates such as tail probabilities for the number of false positives and for the proportion of false positives among the rejected hypotheses (van der Laan et al., 2004a). The proposed bootstrap multiple testing procedures are evaluated by a simulation study and applied to genomic data in the fourth article of the series (Pollard et al., 2004).


Author(s):  
Amelie Elsäßer ◽  
Anja Victor ◽  
Gerhard Hommel

In candidate gene association studies, usually several elementary hypotheses are tested simultaneously using one particular set of data. The data normally consist of partly correlated SNP information. Every SNP can be tested for association with the disease, e.g., using the Cochran-Armitage test for trend. To account for the multiplicity of the test situation, different types of multiple testing procedures have been proposed. The question arises whether procedures taking into account the discreteness of the situation show a benefit especially in case of correlated data. We empirically evaluate several different multiple testing procedures via simulation studies using simulated correlated SNP data. We analyze FDR and FWER controlling procedures, special procedures for discrete situations, and the minP-resampling-based procedure. Within the simulation study, we examine a broad range of different gene data scenarios. We show that the main difference in the varying performance of the procedures is due to sample size. In small sample size scenarios, the minP-resampling procedure though controlling the stricter FWER even had more power than the classical FDR controlling procedures. In contrast, FDR controlling procedures led to more rejections in higher sample size scenarios.


Sign in / Sign up

Export Citation Format

Share Document