Heterojunctions for Photocatalytic Wastewater Treatment: Positive Holes, Hydroxyl Radicals and Activation Mechanism under UV and Visible Light

Author(s):  
José Alfonso Pinedo Escobar ◽  
Edgar Moctezuma ◽  
Benito Serrano Rosales

AbstractForming heterojunctions by coupling two or more semiconductors is an important strategy to develop stable and efficient photocatalysts able to operate both under near-UV and visible light. Five novel heterojunction systems were synthesized in the present study, using a modified sol-gel method: Bi2Mo3O12/TiO2, ZnFe2O4/TiO2, FeTiO3/TiO2, WO3(US)/TiO2 and WO3/TiO2. These heterojunction semiconductors were characterized by using XRD, SEM and EDX, UV–Vis diffuse reflectance spectroscopy and BET. Their photocatalytic activities were evaluated using methyl orange (MO) degradation under both near-UV and visible light. From the various heterojunctions developed, the WO3(US)/TiO2 photocatalyst was the one that showed the highest photocatalytic efficiency with this being assigned to the formation of a double heterojunction involving anatase, rutile and monoclinic WO3 phases. On this basis, a photocatalyst activation mechanism applicable to near-UV and visible light irradiation was proposed. This mechanism explains how the photogenerated electrons (e–) and positive holes (h+) can be transferred to the various phases. As a result, and given the reduced holes and electron recombination surface, hydroxyl radicals found were more abundant. To confirm this assumption, hole formation in the valence band was studied, using hole-scavenging reactions involving ion iodine (I–), while hydroxyl radical production used fluorescence spectroscopy.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Douga Nassoko ◽  
Yan-Fang Li ◽  
Jia-Lin Li ◽  
Xi Li ◽  
Ying Yu

Titanium dioxide (TiO2) doped with neodymium (Nd), one rare earth element, has been synthesized by a sol-gel method for the photocatalytic degradation of rhodamine-B under visible light. The prepared samples are characterized by X-ray diffractometer, Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller measurement. The results indicate that the prepared samples have anatase and brookite phases. Additionally, Nd as Nd3+may enter into the lattice ofTiO2and the presence of Nd3+substantially enhances the photocatalytic activity ofTiO2under visible light. In order to further explore the mechanism of photocatalytic degradation of organic pollutant, photoluminescence spectrometer and scavenger addition method have been employed. It is found that hydroxide radicals produced by Nd-dopedTiO2under visible light are one of reactive species for Rh-B degradation and photogenerated electrons are mainly responsible for the formation of the reactive species.


2014 ◽  
Vol 809-810 ◽  
pp. 890-894
Author(s):  
Dan Li ◽  
Lian Wei Shan ◽  
Gui Lin Wang ◽  
Li Min Dong ◽  
Wei Li ◽  
...  

Boron-BiVO4 samples were synthesized by sol-gel method. They were characterized by UV-vis diffuse reflectance spectroscopy, X-ray diffraction. Photocatalytic activity of the obtained BiVO4 samples was investigated through degrading methylene blue (MB). The results reveal that boron-BiVO4 catalysts have monoclinic scheelite structure. The BiVO4 and Co-BiVO4 photocatalysts were responsive to visible light. Co-BiVO4 photocatalyst showed higher photocatalytic activity than pure BiVO4, resulting in the significantly improved efficiency of degradation of MB.


2019 ◽  
Vol 12 (04) ◽  
pp. 1950045 ◽  
Author(s):  
Lin Zhao ◽  
Yanzhao Xie ◽  
Qiuyu Lin ◽  
Rongze Zheng ◽  
Yong Diao

A series of composite catalysts of C, N and P co-doped TiO2 were prepared by sol-gel method, using a biomass (soluble starch) dopant. The samples were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS), fourier transform infrared (FTIR) spectroscopy. The results show that TiO2 is co-doped with C, N and P by one step. The resulting composite exhibited higher specific surface area, wider visible-light absorption band with respect to the pure TiO2. The sample calcined at 400∘C for 2[Formula: see text]h with a doping amount of 6[Formula: see text]g soluble starch showed the best electrochemical performance. The C, N and P co-doped TiO2 was also used for the degradation of methylene blue (MB) and degradation ratio was up to 98% in 80[Formula: see text]min under visible light irradiation.


2014 ◽  
Vol 69 (5) ◽  
Author(s):  
P. W. Koh ◽  
L. Yuliati ◽  
S. L. Lee

Comparative study of Cr, Co or V-doped TiO2 was carried out. The photocatalysts were synthesized via sol-gel method. The results indicated that the dopants of Cr, Co, and V induced anatase to rutile phase transition of TiO2 at different dopant amounts of 1, 4, 2 mol%, respectively. Besides that, the existence of dopant extended the absorption wavelength of TiO2 to visible light region, thus making it a visible-driven photocatalyst. The doped transition metal exhibited different oxidation states on the TiO2 surface. The prepared photocatalysts were tested over photodegradation of Congo Red. Amongst all, Cr-doped TiO2 (3 mol%) was the best photocatalyst attributed to the presence of 45% rutile phase, reduced band gap energy of 2.30 eV and formation of Cr6+, which acted as an electron scavenger to delay the hole-electron recombination. 


2012 ◽  
Vol 11 (05) ◽  
pp. 1250030 ◽  
Author(s):  
TESHOME ABDO SEGNE ◽  
SIVA RAO TIRUKKOVALLURI ◽  
SUBRAHMANYAM CHALLAPALLI

The advantage of doping of TiO2 with copper has been utilized for enhanced degradation of pesticide under visible light irradiation. The sol–gel method has been undertaken for the synthesis of copper-doped TiO2 by varying the dopant loadings from 0.25 wt.% to 1.0 wt.% of Cu2+ . The doped samples were characterized by UV-Visible Diffuse Reflectance Spectroscopy (DRS), N2 adsorption–desorption (BET), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectrometry (EDS). The photocatalytic activity of the catalyst was tested by degradation of dichlorvos under visible light illumination. The results found that 0.75 wt.% of Cu2+ doped nanocatalysts have better photo catalytic activity than the rest of percentages doped, undoped TiO2 and Degussa P25. The reduction of band gap was estimated and the influence of the process parameters on photo catalytic activity of the catalyst has been explained.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaowen Zou ◽  
Xiaoli Dong ◽  
Limei Wang ◽  
Hongchao Ma ◽  
Xinxin Zhang ◽  
...  

Herein, Ni doped ZnO-TiO2composites were prepared by facile sol-gel approach and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS), and photoluminescence spectroscopy (PL). The results indicated that the Ni ions can be incorporated into the lattice of TiO2structure and replace Ti. The introduction of Ni expanded light absorption of TiO2to visible region, increased amount of surface hydroxyl groups and physically adsorbed oxygen (as the electronic scavenges), and then enhanced separation rate of photogenerated carriers. The photodegradation test of reactive brilliant blue (KN-R) under simulated solar light indicated that Ni doped ZnO-TiO2composites have better photocatalytic activities, as compared to those of TiO2and ZnO-TiO2.


2012 ◽  
Vol 550-553 ◽  
pp. 196-199
Author(s):  
Ze Wan ◽  
Fa Mei Feng ◽  
Jian Zhang Li ◽  
Jin Jin He ◽  
Jun Bo Zhong ◽  
...  

This paper reveals that photocatalytic activity of Bi2O3 under visible light towards the decolorization of Methyl Orange solution can be greatly enhanced by doping Pr into the lattice of Bi2O3 using a sol-gel method. The photocatalysts were characterized by BET, UV-Vis diffuse reflectance spectroscopy and surface photovoltage spectroscopy (SPS), respectively. The result shows that 4%Pr doped Bi2O3 possesses the best photocatalytic activity under visible light.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xuewei Dong ◽  
Fan Zhang ◽  
Chuan Rong ◽  
Hongchao Ma

The ZnS-Bi-TiO2composites were prepared by the sol-gel method and were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-visible diffuse reflectance spectroscopy (UV-Vis DRS). It is found that the doped Bi as Bi4+/Bi3+species existed in composites, and the introducing of ZnS enhanced further the light absorption ability of TiO2in visible region and reduced the recombination of photogenerated electrons and holes. As compared to pure TiO2, the ZnS-Bi-TiO2exhibited enhanced photodegradation efficiency under xenon lamp irradiation, and the kinetic constant of methyl orange removal with ZnS-Bi-Ti-0.005 (0.0141 min−1) was 3.9 times greater than that of pure TiO2(0.0029 min−1), which could be attributed to the existence of Bi4+/Bi3+species, the ZnS/TiO2heterostructure.


2020 ◽  
Vol 13 (07) ◽  
pp. 2051037
Author(s):  
Ke Han ◽  
Guobao Li ◽  
Fang Li ◽  
Mingming Yao

For the sake of improving the photocatalytic performance of TiO2, we prepared the B/Ag/Fe tridoped TiO2 films on common glass and stone substrates by the sol–gel method. In this work, the optical absorption, recombination of photogenerated electrons (e−) and holes (h[Formula: see text]), crystal types, thermal stability, composition, specific surface area and photocatalytic activity of the modified TiO2 films were investigated. The results indicated that B/Ag/Fe tridoping not only enhanced the absorption of visible light by TiO2, but inhibited the recombination of electron–hole (e−/h[Formula: see text]) pairs. The tridoping also promoted the formation of anatase and prevented the transformation of anatase to rutile at high temperature. The composite TiO2 has a large specific surface area, about three times that of pure TiO2. The photocatalytic activity of the TiO2 films were evaluated by methyl green (MG) and formaldehyde degradation. In all samples, the B/Ag/Fe tridoped TiO2 film exhibited the highest degradation rate of MG under both ultraviolet and visible light irradiation. The improvement of photocatalytic performance of TiO2 films is due to the synergistic effect of the B/Ag/Fe tridoping, which enhances the absorption of visible light and prolongs the lifetime of e−/h[Formula: see text] pairs and facilitates transfer of interface charge.


2011 ◽  
Vol 279 ◽  
pp. 83-87 ◽  
Author(s):  
Pei Song Tang ◽  
He Sun ◽  
Feng Cao ◽  
Jin Tian Yang ◽  
Sheng Liang Ni ◽  
...  

The LaNiO3 nanoparticles were prepared by a sol-gel process. The LaNiO3 nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Vis diffuse reflectance spectroscopy (DRS). XRD and SEM demonstrate the successful synthesis of single phase perovskite LaNiO3 and an average grain size of 80 nm in diameter. It was found that the as-prepared LaNiO3 shows strong visible-light absorption with absorption onset of 545 nm, indicating a narrow optical band gap of 2.28 eV. Consequently, LaNiO3 nanoparticles show high visible-light photocatalytic activity for decomposition of methyl orange in comparison with the commercial Degussa P25. The photocatalytic experiment shows the high photocatalytic activity for the decomposition of methyl orange under visible-light irradiation, which is attributed to the strong visible-light absorption.


Sign in / Sign up

Export Citation Format

Share Document