Physico-chemical Characterization of Turbidity-Causing Particles in Beet Sugar Solutions

2016 ◽  
Vol 12 (2) ◽  
pp. 127-137 ◽  
Author(s):  
El-Sayed Abdel-Rahman ◽  
Eckhard Floeter

Abstract The occurrence of turbidity is a frequently observed phenomenon in beet sugar manufacturing, particularly in thick juice. The presence of small dispersed turbidity-causing particles can have a direct impact on the consumer’s perceivable quality of white sugar containing products. Therefore, this work aims to characterize those turbidity-causing particles and elucidate the mechanism of their formation. Samples from various European beet sugar plants were collected during different sugar production periods. The turbidity of white sugar is found to be mainly related to small calcium oxalate particles (0.45–1 µm). Their occurrence is obviously related to the presence of calcium and oxalate. However, the analysis presented documents that beyond the levels of these ions, other factors like storage time, the change of environment due to microbiological processes as well as simple processing steps have a profound effect on turbidity levels. The results confirm that also at an industrial scale calcium oxalate dihydrate precipitates from concentrated sucrose solutions despite the fact that calcium oxalate monohydrate is the most stable form. In summary our analysis of turbidity at an industrial scale marks a starting point for any further turbidity reduction approach.

1987 ◽  
Vol 42 (2) ◽  
pp. 89-93 ◽  
Author(s):  
Toshitsugu Oka ◽  
Toshiaki Yoshioka ◽  
Takuo Koide ◽  
Minato Takaha ◽  
Takao Sonoda

2012 ◽  
Vol 554-556 ◽  
pp. 1738-1741 ◽  
Author(s):  
Zhi Yue Xia ◽  
Yi Ming Ding ◽  
Jian Ming Ouyang

The differences between the urinary crystallites from patients with renal calculi and healthy subjects were compared using SEM, XRD, and nano-particle size analyzer, etc. These differences concern morphology, aggregation state, number, particle size, crystal phase and Zeta potential, etc. About 90% of the crystallites had the particle sizes less than 20 μm, the Zeta potential was -(113) mV, and the composition included a large proportion of calcium oxalate dihydrate (COD) crystals. By comparison, the urinary crystallites from patients with renal calculi had sharp edges and corners and exhibited significant aggregation. There were more crystallites with the size greater than 20 μm in comparison with those in healthy subjects, their Zeta potential was -(73) mV, and calcium oxalate existed mainly in the form of calcium oxalate monohydrate (COM) crystals. The above differences increased the aggregation trend of the crystallites in lithogenic urine and caused the probability of renal calculi formation to increase.


2000 ◽  
Vol 15 (2) ◽  
pp. 94-100
Author(s):  
K. D. Rogers ◽  
M. W. Sperrin ◽  
E. J. MacLean

The principal aim of this study was to assess a new approach to the characterization of uroliths using synchrotron radiation. To achieve this, a detailed investigation of the crystalline nature of a human bladder urolith has been undertaken. Changes in the phase composition and crystalline mineral nature have been measured from the urolith core center to its outer surface. Data were collected using a microbeam, synchrotron probe, and image plate. Rietveld analysis has enabled us to determine that the unit cell dimensions of the majority phases (anhydrous uric acid and calcium oxalate monohydrate) are significantly greater in the core region but become progressively smaller from the outer to inner regions. The crystallites of both phases are also shown to possess significant radial orientation which varies through the urolith and reaches a maximum at a point of principal fracture. The analysis has also allowed us to study the change in average crystallite morphology; the crystallites of both phases are shown to decrease in size toward the outer parts of the urolith although this is in a nonuniform fashion. Evidence of calcium oxalate dihydrate was also found, but only within the outermost region of the urolith.


1990 ◽  
Vol 79 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Phulwinder K. Grover ◽  
Rosemary L. Ryall ◽  
Villis R. Marshall

1. The effect of hyperuricosuria, simulated by increasing the concentration of dissolved urate, on the crystallization of calcium oxalate in human urine was examined. 2. Twenty urine samples were studied. Ten of these, designated type A, spontaneously precipitated calcium oxalate dihydrate crystals upon the addition of a solution of sodium urate solution which raised the median urate concentration from 3.1 to 7.0 mmol/l. 3. Adding dissolved urate to the remaining type B samples raised the median urate concentration from 2.2 to 6.2 mmol/l, but did not cause the precipitation of calcium oxalate. This was induced in these samples by the addition of a standard load of oxalate above an empirically determined metastable limit. 4. In the type B urine samples, the addition of urate decreased the median metastable limit from 125 to 66 μmol of oxalate, trebled the median volume of crystalline calcium oxalate deposited from 35 000 to 105 000 μm3/μl and significantly increased the overall size of the particles precipitated. Calcium oxalate monohydrate was exclusively precipitated, and the individual crystals deposited in the presence of urate were markedly smaller, more numerous, and more highly aggregated than those produced in its absence. 5. These results constitute the most convincing evidence yet obtained that hyperuricosuria may be a powerful promoter of calcium oxalate stone formation.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Bao-Song Gui ◽  
Rong Xie ◽  
Xiu-Qiong Yao ◽  
Mei-Ru Li ◽  
Jian-Ming Ouyang

The composition and morphology of nanocrystals in urines of healthy persons and lithogenic patients were comparatively investigated by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was shown that the main composition of urinary nanocrystals in healthy persons were calcium oxalate dihydrate (COD), uric acid, and ammonium magnesium phosphate (struvite). However, the main compositions of urinary nanocrystals in lithogenic patients were struvite,β-tricalcium phosphate, uric acid, COD, and calcium oxalate monohydrate (COM). According to the XRD data, the size of nanocrystals was calculated to be23∼72 nm in healthy urine and12∼118 nm in lithogenic urine by Scherer formula. TEM results showed that the nanocrystals in healthy urine were dispersive and uniform with a mean size of about 38 nm. In contrast, the nanocrystals in lithogenic urine were much aggregated with a mean size of about 55 nm. The results in this work indicated that the urinary stone formation may be prevented by diminishing the aggregation and the size differentiation of urinary nanocrystals by physical or chemical methods.


Author(s):  
Mary Alice Webb ◽  
Howard J. Arnott

Calcium oxalate occurs in two forms, monohydrate (whewellite) and dihydrate (weddelite). Both forms occur intracellularly in plants, typically within vacuoles. In particular plant species a given tissue usually has crystals with specific and characteristic morphology. The occurrence of calcium oxalate monohydrate and dihydrate together in the same cell is thought to be extremely rare and has been reported only in Allium and Begonia. In vitro the dihydrate is unstable under certain conditions and may dissolve and reprecipitate as the monohydrate. In this paper we report observations of crystals isolated from grape (Vitis vinifera) endosperm. Using optical methods both calcium oxalate monohydrate and dihydrate, as well as dihydratemonohydrate associations, have been identified.


2010 ◽  
Vol 25 (5) ◽  
pp. 444-448 ◽  
Author(s):  
Silvia Fernandes Ribeiro da Silva ◽  
Djamile Cordeiro de Matos ◽  
Sônia Leite da Silva ◽  
Elizabeth De Francesco Daher ◽  
Henry de Holanda Campos ◽  
...  

PURPOSE: To compare chemical to morphological kidney stone composition analysis based on a sample of 50 stones retrieved from patients at a nephrology service. METHODS: The chemical analysis was performed with a Bioclin® kit, while a 10-mm magnifying glass (10x; Prolabo, Paris, France) was employed in the morphological analysis. Findings obtained with the two methods were compared and classified as concordant (100% agreement), partly concordant (concordant for major components, discordant for minor components) or discordant (discordant for major components). RESULTS: In the chemical analysis, the most commonly observed major component was calcium (70%), followed by oxalate (66%), ammonium (56%), urate (28%) and carbonate (24%). In the morphological analysis, the most commonly observed major components were calcium phosphate and magnesium (32% each), followed by calcium oxalate monohydrate (24%), uric acid and urates (20% each), calcium oxalate dihydrate (18%) and cystine (6%). Infectious kidney stones were identified in 34% and 24% of cases by morphological and chemical analysis, respectively. Thirty-eight percent of the samples were classified as concordant, 52% were partly concordant and 10% were discordant. CONCLUSION: We suggest kidney stones be routinely submitted to both types of analysis for a better understanding of the mechanisms involved in lithogenesis.


Sign in / Sign up

Export Citation Format

Share Document