Determination of the Thermodynamic Properties of Palladium-Gallium and Nickel-Indium Solid Solution / Bestimmung thermodynamischer Aktivitäten der Palladium-Gallium und Nickel-Indium Mischkristalle

Author(s):  
Marcus Bienzle ◽  
Ferdinand Sommer
1981 ◽  
Vol 7 (1) ◽  
pp. 43-46 ◽  
Author(s):  
P. Thierry ◽  
C. Chatillon-Colinet ◽  
J. C. Mathieu ◽  
J. R. Regnard ◽  
J. Amoss�

1979 ◽  
Vol 44 ◽  
pp. 349-355
Author(s):  
R.W. Milkey

The focus of discussion in Working Group 3 was on the Thermodynamic Properties as determined spectroscopically, including the observational techniques and the theoretical modeling of physical processes responsible for the emission spectrum. Recent advances in observational techniques and theoretical concepts make this discussion particularly timely. It is wise to remember that the determination of thermodynamic parameters is not an end in itself and that these are interesting chiefly for what they can tell us about the energetics and mass transport in prominences.


2011 ◽  
Vol 509 (24) ◽  
pp. 6773-6776 ◽  
Author(s):  
Ziya S. Aliev ◽  
Gulnara I. Ibadova ◽  
Jean-Claude Tedenac ◽  
Andrei V. Shevelkov ◽  
Mahammad B. Babanly

1987 ◽  
Vol 42 (6) ◽  
pp. 746-749 ◽  
Author(s):  
Jenő Juhász ◽  
Sarolta Igaz ◽  
Béla Jóvér ◽  
Zoltán G. Szabó

Abstract Defect Sites of CdO, Reducibility, Analysis Three procedures of chemical analysis are proposed for the direct determination of excess Cd in CdO: a spectrophotometric, a titrimetric and a gravimetric one, for 0-1500 ppm, 500-50,000 ppm and above 5%, respectively. The good reproducibility and reliability is illustrated by results referring to CdO samples heat-treated in H 2 and in air between 100 and 350 °C. Reduction in H2 increases the concentration of excess Cd up to 4000 ppm, above that separate Cd phase forms. The excess Cd in solid solution (interstitial sites) is more resistant against re-oxidation, than the bulk Cd phase.


Author(s):  
Cristian F. Costa ◽  
Paulo C. Corrêa ◽  
Jaime D. B. Vanegas ◽  
Fernanda M. Baptestini ◽  
Renata C. Campos ◽  
...  

ABSTRACT Jabuticaba is a fruit native of Brazil and, besides containing many nutritional qualities, it also has a good field for use in products such as flour for cakes and biscuits, juice, liqueur, jelly and others. This study aimed to model the drying kinetics and determine the thermodynamic properties of jabuticaba peel at different drying air temperatures. Ripe fruits of jabuticaba (Myrciaria jaboticaba) were collected and pulped manually. Drying was carried out in a forced-air circulation oven with a flow of 5.6 m s-1 at temperatures of 40, 50, 60 and 70 °C. Six mathematical models commonly used to represent the drying process of agricultural products were fitted to the experimental data. The Arrhenius model was used to represent the drying constant as a function of temperature. The Midilli model showed the best fit to the experimental data of drying. The drying constant increased with the increment in drying temperature and promoted an activation energy of 37.29 kJ mol-1. Enthalpy and Gibbs free energy decreased with the increase in drying temperature, while entropy decreased and was negative.


Sign in / Sign up

Export Citation Format

Share Document