Models of Thermodynamic Properties of Prominences

1979 ◽  
Vol 44 ◽  
pp. 349-355
Author(s):  
R.W. Milkey

The focus of discussion in Working Group 3 was on the Thermodynamic Properties as determined spectroscopically, including the observational techniques and the theoretical modeling of physical processes responsible for the emission spectrum. Recent advances in observational techniques and theoretical concepts make this discussion particularly timely. It is wise to remember that the determination of thermodynamic parameters is not an end in itself and that these are interesting chiefly for what they can tell us about the energetics and mass transport in prominences.

1998 ◽  
Vol 63 (7) ◽  
pp. 955-966
Author(s):  
Eva Přibylová ◽  
Miroslav Holík

Four programs for the 1H NMR line shape analysis: two commercial - Winkubo (Bruker) and DNMR5 (QCPE 165) and two written in our laboratory - Newton (in Microsoft Excel) and Simtex (in Matlab) have been tested in order to get highly accurate rate constants of the hindered rotation about a single bond. For this purpose four testing criteria were used, two of them were also developed by us. As supplementary determinations the rate constants obtained for the coalescence temperature and for the thermal racemization of chromatographically separated enantiomers were used which fitted well the temperature dependence of the rate constants determined by the line shape analysis. As a test compound adamantan-1-yl 3-bromo-2,4,6-trimethylphenyl ketone was prepared and studied. It was shown that supermodified simplex method used in our algorithm (Simtex), though time consuming, gives the most accurate values of the rate constants and consequently the calculated thermodynamic parameters Ea, ∆H≠, and ∆S≠ lay in relatively narrow confidence intervals.


Genetics ◽  
1996 ◽  
Vol 142 (1) ◽  
pp. 295-303 ◽  
Author(s):  
Jianzhi Zhang ◽  
Masatoshi Nei

Antennapedia (Antp)-class homeobox genes are involved in the determination of pattern formation along the anterior-posterior axis of the animal embryo. A phylogenetic analysis of Antp-class homeodomains of the nematode, Drosophila, amphioxus, mouse, and human indicates that the 13 cognate group genes of this gene family can be divided into two major groups, i.e., groups I and II. Group I genes can further be divided into subgroups A (cognate groups 1–2), B (cognate group 3), and C (cognate groups 4–8), and group II genes can be divided into subgroups D (cognate groups 9–10) and E (cognate groups 11–13), though this classification is somewhat ambiguous. Evolutionary distances among different amino acid sequences suggest that the divergence between group I and group II genes occurred ∼1000 million years (MY) ago, and the five different subgroups were formed by ∼600 MY ago, probably before the divergence of Pseudocoelomates (e.g., nematodes) and Coelomates (e.g., insects and chordates). Our results show that the genes that are phylogenetically close are also closely located in the chromosome, suggesting that the colinearity between the gene expression and gene arrangement was generated by successive tandem gene duplications and that the gene arrangement has been maintained by some sort of selection.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Jørgen Christensen-Dalsgaard

AbstractThe Sun provides a critical benchmark for the general study of stellar structure and evolution. Also, knowledge about the internal properties of the Sun is important for the understanding of solar atmospheric phenomena, including the solar magnetic cycle. Here I provide a brief overview of the theory of stellar structure and evolution, including the physical processes and parameters that are involved. This is followed by a discussion of solar evolution, extending from the birth to the latest stages. As a background for the interpretation of observations related to the solar interior I provide a rather extensive analysis of the sensitivity of solar models to the assumptions underlying their calculation. I then discuss the detailed information about the solar interior that has become available through helioseismic investigations and the detection of solar neutrinos, with further constraints provided by the observed abundances of the lightest elements. Revisions in the determination of the solar surface abundances have led to increased discrepancies, discussed in some detail, between the observational inferences and solar models. I finally briefly address the relation of the Sun to other similar stars and the prospects for asteroseismic investigations of stellar structure and evolution.


Sign in / Sign up

Export Citation Format

Share Document