Stability and Hopf Bifurcation of a Predator–Prey Biological Economic System with Nonlinear Harvesting Rate

Author(s):  
Weiyi Liu ◽  
Chaojin Fu ◽  
Boshan Chen

AbstractIn this paper, we analyze the stability and Hopf bifurcation of a biological economic system with harvesting effort on prey. The model we consider is described by differential-algebraic equations because of economic revenue. We choose economic revenue as a positive bifurcation parameter here. Different from previous researchers’ models, this model with nonlinear harvesting rate is more general. Furthermore, the improved calculation process of parameterization is much simpler and it can handle more complex models which could not be dealt with by their algorithms because of enormous calculation. Finally, by MATLAB simulation, the validity and feasibility of the obtained results are illustrated.

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Heping Jiang ◽  
Huiping Fang ◽  
Yongfeng Wu

Abstract This paper mainly aims to consider the dynamical behaviors of a diffusive delayed predator–prey system with Smith growth and herd behavior subject to the homogeneous Neumann boundary condition. For the analysis of the predator–prey model, we have studied the existence of Hopf bifurcation by analyzing the distribution of the roots of associated characteristic equation. Then we have proved the stability of the periodic solution by calculating the normal form on the center of manifold which is associated to the Hopf bifurcation points. Some numerical simulations are also carried out in order to validate our analysis findings. The implications of our analytical and numerical findings are discussed critically.


2009 ◽  
Vol 20 (2) ◽  
pp. 187-214 ◽  
Author(s):  
WAN CHEN ◽  
MICHAEL J. WARD

The dynamics and oscillatory instabilities of multi-spike solutions to the one-dimensional Gray-Scott reaction–diffusion system on a finite domain are studied in a particular parameter regime. In this parameter regime, a formal singular perturbation method is used to derive a novel ODE–PDE Stefan problem, which determines the dynamics of a collection of spikes for a multi-spike pattern. This Stefan problem has moving Dirac source terms concentrated at the spike locations. For a certain subrange of the parameters, this Stefan problem is quasi-steady and an explicit set of differential-algebraic equations characterizing the spike dynamics is derived. By analysing a nonlocal eigenvalue problem, it is found that this multi-spike quasi-equilibrium solution can undergo a Hopf bifurcation leading to oscillations in the spike amplitudes on an O(1) time scale. In another subrange of the parameters, the spike motion is not quasi-steady and the full Stefan problem is solved numerically by using an appropriate discretization of the Dirac source terms. These numerical computations, together with a linearization of the Stefan problem, show that the spike layers can undergo a drift instability arising from a Hopf bifurcation. This instability leads to a time-dependent oscillatory behaviour in the spike locations.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Shaoli Wang ◽  
Zhihao Ge

The Hopf bifurcation for a predator-prey system with -logistic growth and prey refuge is studied. It is shown that the ODEs undergo a Hopf bifurcation at the positive equilibrium when the prey refuge rate or the index- passed through some critical values. Time delay could be considered as a bifurcation parameter for DDEs, and using the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction of bifurcations and the stability and other properties of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the main results.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Fengying Wei ◽  
Lanqi Wu ◽  
Yuzhi Fang

A kind of delayed predator-prey system with harvesting is considered in this paper. The influence of harvesting and delay is investigated. Our results show that Hopf bifurcations occur as the delayτpasses through critical values. By using of normal form theory and center manifold theorem, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are obtained. Finally, numerical simulations are given to support our theoretical predictions.


2018 ◽  
Vol 28 (14) ◽  
pp. 1850179 ◽  
Author(s):  
Fengrong Zhang ◽  
Xinhong Zhang ◽  
Yan Li ◽  
Changpin Li

This paper is concerned with a delayed predator–prey model with nonconstant death rate and constant-rate prey harvesting. We mainly study the impact of the time delay on the stability of positive constant solution of delayed differential equations and positive constant equilibrium of delayed diffusive differential equations, respectively. By choosing time delay [Formula: see text] as a bifurcation parameter, we show that Hopf bifurcation can occur as the time delay passes some critical values. In addition, the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, some numerical simulations are carried out to depict our theoretical results.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Leping Sun ◽  
Yuhao Cong

This paper is concerned with the asymptotic stability of delay differential-algebraic equations. Two stability criteria described by evaluating a corresponding harmonic analytical function on the boundary of a certain region are presented. Stability regions are also presented so as to show the method geometrically. Our results are not reported.


2016 ◽  
Vol 26 (10) ◽  
pp. 1650165 ◽  
Author(s):  
Haiyin Li ◽  
Gang Meng ◽  
Zhikun She

In this paper, we investigate the stability and Hopf bifurcation of a delayed density-dependent predator–prey system with Beddington–DeAngelis functional response, where not only the prey density dependence but also the predator density dependence are considered such that the studied predator–prey system conforms to the realistically biological environment. We start with the geometric criterion introduced by Beretta and Kuang [2002] and then investigate the stability of the positive equilibrium and the stability switches of the system with respect to the delay parameter [Formula: see text]. Especially, we generalize the geometric criterion in [Beretta & Kuang, 2002] by introducing the condition [Formula: see text] which can be assured by the condition [Formula: see text], and adopting the technique of lifting to define the function [Formula: see text] for alternatively determining stability switches at the zeroes of [Formula: see text]s. Afterwards, by the Poincaré normal form for Hopf bifurcation in [Kuznetsov, 1998] and the bifurcation formulae in [Hassard et al., 1981], we qualitatively analyze the properties for the occurring Hopf bifurcations of the system (3). Finally, an example with numerical simulations is given to illustrate the obtained results.


1999 ◽  
Vol 121 (4) ◽  
pp. 594-598 ◽  
Author(s):  
V. Radisavljevic ◽  
H. Baruh

A feedback control law is developed for dynamical systems described by constrained generalized coordinates. For certain complex dynamical systems, it is more desirable to develop the mathematical model using more general coordinates then degrees of freedom which leads to differential-algebraic equations of motion. Research in the last few decades has led to several advances in the treatment and in obtaining the solution of differential-algebraic equations. We take advantage of these advances and introduce the differential-algebraic equations and dependent generalized coordinate formulation to control. A tracking feedback control law is designed based on a pointwise-optimal formulation. The stability of pointwise optimal control law is examined.


Sign in / Sign up

Export Citation Format

Share Document