Numerical study of multi-dimensional hyperbolic telegraph equations arising in nuclear material science via an efficient local meshless method

Author(s):  
Imtiaz Ahmad ◽  
Aly R. Seadawy ◽  
Hijaz Ahmad ◽  
Phatiphat Thounthong ◽  
Fuzhang Wang

Abstract This research work is to study the numerical solution of three-dimensional second-order hyperbolic telegraph equations using an efficient local meshless method based on radial basis function (RBF). The model equations are used in nuclear material science and in the modeling of vibrations of structures. The explicit time integration technique is utilized to semi-discretize the model in the time direction whereas the space derivatives of the model are discretized by the proposed local meshless procedure based on multiquadric RBF. Numerical experiments are performed with the proposed numerical scheme for rectangular and non-rectangular computational domains. The proposed method solutions are converging quickly in comparison with the different existing numerical methods in the recent literature.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4988
Author(s):  
Nico De Marchi ◽  
WaiChing Sun ◽  
Valentina Salomoni

The triggering and spreading of volumetric waves in soils, namely pressure (P) and shear (S) waves, developing from a point source of a dynamic load, are analyzed. Wave polarization and shear wave splitting are innovatively reproduced via a three-dimensional Finite Element research code upgraded to account for fast dynamic regimes in fully saturated porous media. The mathematical–numerical model adopts a u-v-p formulation enhanced by introducing Taylor–Hood mixed finite elements and the stability features of the solution are considered by analyzing different implemented time integration strategies. Particularly, the phenomena have been studied and reconstructed by numerically generating different types of medium anisotropy accounting for (i) an anisotropic solid skeleton, (ii) an anisotropic permeability tensor, and (iii) a Biot’s effective stress coefficient tensor. Additionally, deviatoric-volumetric coupling effects have been emphasized by specifically modifying the structural anisotropy. A series of analyses are conducted to validate the model and prove the effectiveness of the results, from the directionality of polarized vibrations, the anisotropy-induced splitting, up to the spreading of surface waves.


2007 ◽  
Vol 581 ◽  
pp. 287-321 ◽  
Author(s):  
RUPESH B. KOTAPATI ◽  
RAJAT MITTAL ◽  
LOUIS N. CATTAFESTA III

The flow associated with a synthetic jet transitioning to turbulence in an otherwise quiescent external flow is examined using time-accurate three-dimensional numerical simulations. The incompressible Navier–Stokes solver uses a second-order accurate scheme for spatial discretization and a second-order semi-implicit fractional step method for time integration. The simulations are designed to model the experiments of C. S. Yao et al. (Proc. NASA LaRC Workshop, 2004) which have examined, in detail, the external evolution of a transitional synthetic jet in quiescent flow. Although the jet Reynolds and Stokes numbers in the simulations match with the experiment, a number of simplifications have been made in the synthetic jet actuator model adopted in the current simulations. These include a simpler representation of the cavity and slot geometry and diaphragm placement. Despite this, a reasonably good match with the experiments is obtained in the core of the jet and this indicates that for these jets, matching of these key non-dimensional parameters is sufficient to capture the critical features of the external jet flow. The computed results are analysed further to gain insight into the dynamics of the external as well as internal flow. The results indicate that near the jet exit plane, the flow field is dominated by the formation of counter-rotating spanwise vortex pairs that break down owing to the rapid growth of spanwise instabilities and transition to turbulence a short distance from the slot. Detailed analyses of the unsteady characteristics of the flow inside the jet cavity and slot provide insights that to date have not been available from experiments.


2020 ◽  
pp. 210-210 ◽  
Author(s):  
Mohan Srivastava ◽  
Hijaz Ahmad ◽  
Imtiaz Ahmad ◽  
Phatiphat Thounthong ◽  
Nawaz Khan

In this article, we present an efficient local meshless method for the numerical treatment of three-dimensional convection-diffusion PDEs. The demand of meshless techniques increment because of its meshless nature and simplicity of usage in higher dimensions. This technique approximates the solution on set of uniform and scattered nodes. The space derivatives of the models are discretized by the proposed meshless procedure though the time fractional part is discretized by Liouville-Caputo fractional derivative. Some test problems on regular and irregular computational domains are presented to verify the validity, efficiency and accuracy of the method.


2020 ◽  
Vol 7 (3) ◽  
pp. 52-56
Author(s):  
MMATMATISA JALILOV ◽  
◽  
RUSTAM RAKHIMOV ◽  

This article discusses the analysis of the general equations of the transverse vibration of a piecewise homogeneous viscoelastic plate obtained in the “Oscillation of inlayer plates of constant thickness” [1]. In the present work on the basis of a mathematical method, the approached theory of fluctuation of the two-layer plates, based on plate consideration as three dimensional body, on exact statement of a three dimensional mathematical regional problem of fluctuation is stood at the external efforts causing cross-section fluctuations. The general equations of fluctuations of piecewise homogeneous viscoelastic plates of the constant thickness, described in work [1], are difficult on structure and contain derivatives of any order on coordinates x, y and time t and consequently are not suitable for the decision of applied problems and carrying out of engineering calculations. For the decision of applied problems instead of the general equations it is expedient to use confidants who include this or that final order on derivatives. The classical equations of cross-section fluctuation of a plate contain derivatives not above 4th order, and for piecewise homogeneous or two-layer plates the elementary approached equation of fluctuation is the equation of the sixth order. On the basis of the analytical decision of a problem the general and approached decisions of a problem are under construction, are deduced the equation of fluctuation of piecewise homogeneous two-layer plates taking into account rigid contact on border between layers, and also taking into account mechanical and rheological properties of a material of a plate. The received theoretical results for the decision of dynamic problems of cross-section fluctuation of piecewise homogeneous two-layer plates of a constant thickness taking into account viscous properties of their material allow to count more precisely the is intense-deformed status of plates at non-stationary external loadings.


Author(s):  
C. Abegg ◽  
Graham de Vahl Davis ◽  
W.J. Hiller ◽  
St. Koch ◽  
Tomasz A. Kowalewski ◽  
...  

2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


Sign in / Sign up

Export Citation Format

Share Document