scholarly journals Anomaly detection in server metrics with use of one-sided median algorithm

2017 ◽  
Vol 9 (1) ◽  
pp. 5-22
Author(s):  
Szymon Zacher ◽  
Przemysław Ryba

AbstractIn this paper we consider the problem of anomaly detection over time series metrics data took from one of corporate grade mail service cluster. We propose the algorithm based on one-sided median concept and present some results of experiments showing impact of parameters settings on algorithm performance. In addition we present short description of classes of anomalies discovered in monitored system. Proposed one-sided median based algorithm shows great robustness and good detection rate and can be considered as possible simple production ready solution.

2021 ◽  
Vol 11 (15) ◽  
pp. 6698
Author(s):  
Jehn-Ruey Jiang ◽  
Jian-Bin Kao ◽  
Yu-Lin Li

Thanks to the advance of novel technologies, such as sensors and Internet of Things (IoT) technologies, big amounts of data are continuously gathered over time, resulting in a variety of time series. A semi-supervised anomaly detection framework, called Tri-CAD, for univariate time series is proposed in this paper. Based on the Pearson product-moment correlation coefficient and Dickey–Fuller test, time series are first categorized into three classes: (i) periodic, (ii) stationary, and (iii) non-periodic and non-stationary time series. Afterwards, different mechanisms using statistics, wavelet transform, and deep learning autoencoder concepts are applied to different classes of time series for detecting anomalies. The performance of the proposed Tri-CAD framework is evaluated by experiments using three Numenta anomaly benchmark (NAB) datasets. The performance of Tri-CAD is compared with those of related methods, such as STL, SARIMA, LSTM, LSTM with STL, and ADSaS. The comparison results show that Tri-CAD outperforms the others in terms of the precision, recall, and F1-score.


2016 ◽  
Vol 136 (3) ◽  
pp. 363-372
Author(s):  
Takaaki Nakamura ◽  
Makoto Imamura ◽  
Masashi Tatedoko ◽  
Norio Hirai

Author(s):  
Cong Gao ◽  
Ping Yang ◽  
Yanping Chen ◽  
Zhongmin Wang ◽  
Yue Wang

AbstractWith large deployment of wireless sensor networks, anomaly detection for sensor data is becoming increasingly important in various fields. As a vital data form of sensor data, time series has three main types of anomaly: point anomaly, pattern anomaly, and sequence anomaly. In production environments, the analysis of pattern anomaly is the most rewarding one. However, the traditional processing model cloud computing is crippled in front of large amount of widely distributed data. This paper presents an edge-cloud collaboration architecture for pattern anomaly detection of time series. A task migration algorithm is developed to alleviate the problem of backlogged detection tasks at edge node. Besides, the detection tasks related to long-term correlation and short-term correlation in time series are allocated to cloud and edge node, respectively. A multi-dimensional feature representation scheme is devised to conduct efficient dimension reduction. Two key components of the feature representation trend identification and feature point extraction are elaborated. Based on the result of feature representation, pattern anomaly detection is performed with an improved kernel density estimation method. Finally, extensive experiments are conducted with synthetic data sets and real-world data sets.


Author(s):  
Lin Zhang ◽  
Wenyu Zhang ◽  
Maxwell J. McNeil ◽  
Nachuan Chengwang ◽  
David S. Matteson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document